

CLATSOP COUNTY

BOARD OF COMMISSIONERS AGENDA WORK SESSION VIRTUAL MEETING

Wednesday, September 06, 2023

BOARD OF COMMISSIONERS:

Mark Kujala, Dist. 1 – Chair Courtney Bangs, Dist. 4 – Vice Chair John Toyooka, Dist. 2 Pamela Wev, Dist. 3 Lianne Thompson, Dist. 5

commissioners@co.clatsop.or.us

CONTACT:

800 Exchange, Suite 410 Astoria, OR 97103 Phone (503) 325-1000 Fax (503) 325-8325

www.co.clatsop.or.us

JOIN THE BOARD OF COMMISSIONERS VIRTUAL MEETINGS

Clatsop County Board of Commissioners host virtual meetings on Zoom

The Board remains committed to broad community engagement and transparency of government. To provide an opportunity for public testimony, the Board will host virtual meetings on Zoom.

Join the meeting from your computer, tablet or smartphone (Zoom link)

You can also dial in using your phone.

1-253-215-8782

Meeting ID: 897 3329 6571

Passcode: 463525

WORK SESSION: 10:30 AM

Work Sessions are an opportunity for Board members to discuss issues informally with staff and invited guests. The Board encourages members of the public to attend Work Sessions and listen to the discussion, but there is generally no opportunity for public comment. Members of the public wishing to address the Board are welcome to do so during the Board's regularly scheduled meetings held twice monthly.

TOPICS:

- 1. County Manager Update
- 2. Clatsop Community College Update (20 min) (Page 3)
- 3. North Coast Watershed Association Presentation (20 min) (Page 9)

ADJOURNMENT

As necessary Executive Session will be held in accordance with but not limited to: ORS 192.660 (2)(d) Labor Negotiations; ORS 192.660 (2)(e) Property Transactions: ORS 192.660 (2)(f) Records exempt from public inspection; ORS 192.660 (2)(h) Legal Counsel

Agenda packets also available online at www.co.clatsop.or.us

This meeting is accessible to persons with disabilities or wish to attend but do not have computer access or cell phone access. Please call 325-1000 if you require special accommodations at least 48 hours prior to the meeting in order to participate.

Board of Commissioners Clatsop County

WORK SESSION AGENDA ITEM SUMMARY

September 6, 2023

Topic: Clatsop Community College Update

Presented By: Trudy Van Dusen Citovic, Board Chair, Clatsop Community College

Kevin LaCoste, Interim President, Clatsop Community College

Informational Summary:

Clatsop Community Update

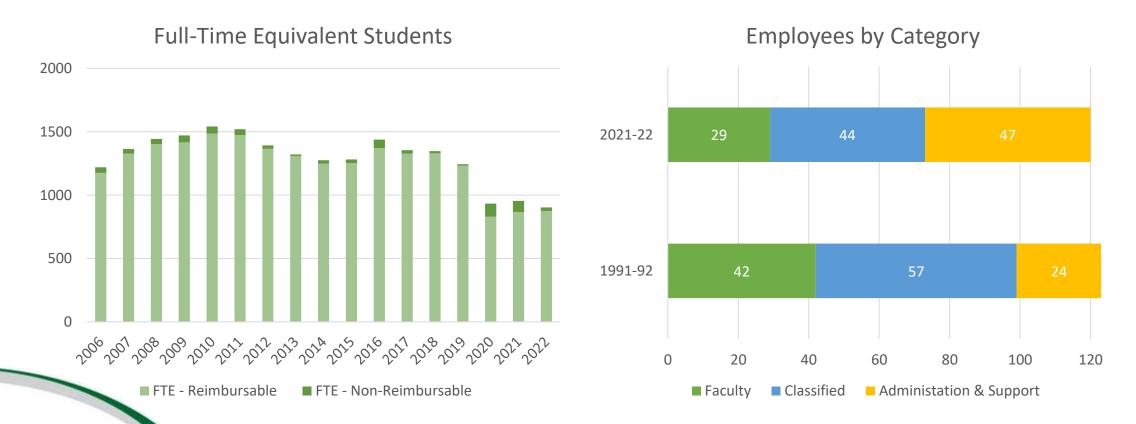
Attachment List

- A. PowerPoint Presentation
- B. Infographic

Agenda Item #2. Page 3

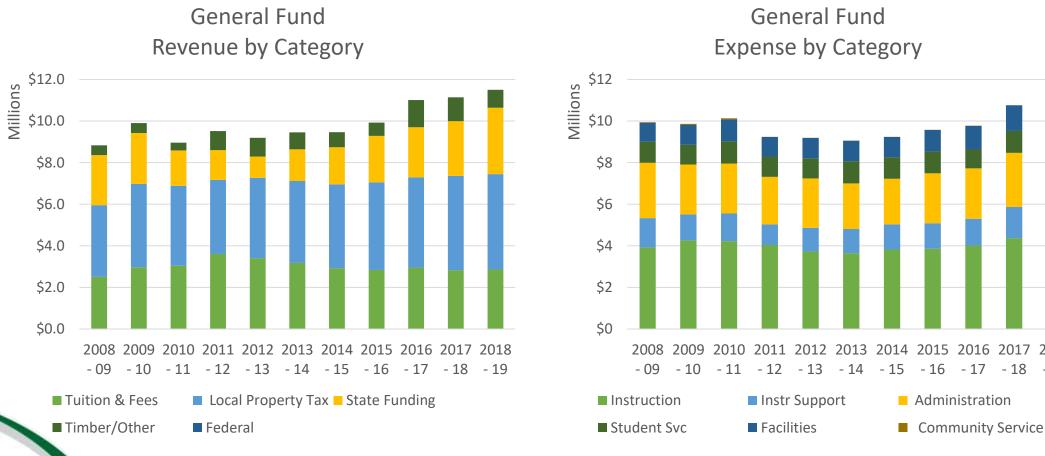
Update to Clatsop County Commission

September 6, 2023



Clatsop Community College Update

- TRANSPARENCY It's not always pretty
- FINANCIALS Most precarious condition in CCC's 65-year history
- DISSERVICE To CCC Students, CCC Employees & Clatsop County
- IT TAKES A VILLAGE It's a Clatsop County problem that requires a Clatsop County solution
- FUTURE We will not only survive, but prosper

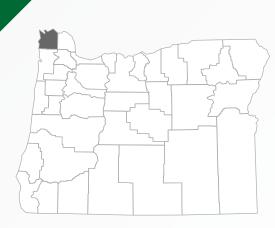


Fewer Students & Faculty; 2x Administrators

Greater reliance on outside funding & spending on support services

The Economic Value of **Clatsop Community College**

About CCC


Credit students

Non-credit students

Employees

Clatsop County, Oregon

Economic impact analysis

Alumni impact

Impact of the increased earnings of CCC alumni and the businesses they work for

An economic boost similar to hosting the World Series

15x

\$97.4 million

Added income

1,321 Jobs supported

out of every 16

jobs in Clatsop County is supported by the activities of CCC and its students.

Operations spending impact

Impact of annual payroll and other spending

\$11.7 million

Added income

Enough to buy 248 new cars

OR

OR

181 Jobs supported

S112.5 million

Added income

Jobs supported

F

Agenda Item #2.

Student spending impact

Impact of the daily spending of CCC students attracted to or retained in the county

Enough to buy 279 families* a year's worth of groceries

OR

54

Jobs supported

Added income

\$3.5 million

= 25 jobs * = family of four

Investment analysis

For every \$1...

Students gain \$6.30 in lifetime earnings

The average associate degree graduate from CCC will see an increase in earnings of \$7,000 each year compared to someone with a high school diploma working in Oregon.

Society gains \$5.10 in added income and social savings

In total...

Taxpayers gain \$10.8 million in added tax revenue and public sector savings

Board of Commissioners Clatsop County

WORK SESSION AGENDA ITEM SUMMARY

September 6, 2023

Topic: North Coast Watershed Association Presentation

Presented By: Gail Henrikson, Community Development Director

Informational Summary:

North Coast Watershed Association staff will present information regarding an on-going grant project related to roadway run-off water

sampling.

Attachment List

Agenda Item #3. Page 9

North Coast Watershed Association (NCWA)

A non-profit, non-regulatory organization made up of local watershed councils.

NCWA Mission

To improve watershed health through community-based efforts.

Association is a non-profit organization made up of diverse stakeholders from the community who coordinate, fund, and link watershed councils to community-based efforts to improve watershed health on the north coast of Oregon and in the Columbia River estuary.

Our Current Work in 2023

Return of the Redds

Campaign for restoring Chum salmon

Water Quality Monitoring

Water temperature and other inputs tested

Rapid Biological Assessment and Limiting Factors Analysis Light

Snorkel surveys with Bio-Surveys LLC to count juvenile salmon and trout assess habitat factors

North Coast Watersheds Web Map

Stakeholder engagement tool for scoping restoration and enhancement projects

Restoration and Enhancement Projects

Ongoing...

The North Coast Watershed Association envisions healthy watersheds that support optimally functioning ecological processes and sustainable populations of naturally spawning fish, wildlife and human communities. We believe that by bringing back the social, economic and ecological role of salmon, the overall health of the watershed and our communities will improve.

Where we work

Our service area and partnership service areas

INTRODUCING RETURN OF THE REDDS

Introducing **Return of the Redds**, a collaboration between the North Coast Watershed Association, local landowners, the forest products industry, nonprofits and state/federal agencies all united around a common goal:

To revitalize the once-abundant
Big Creek and Youngs Bay
watersheds
and chum salmon populations.

BASIC PROJECT DETAILS

Goal:

• To restore habitat and increase local chum salmon populations

Timing:

• Began Jan. 1, 2021, habitat restoration work starting in 2022

Project areas:

The Youngs Bay and Big Creek watersheds

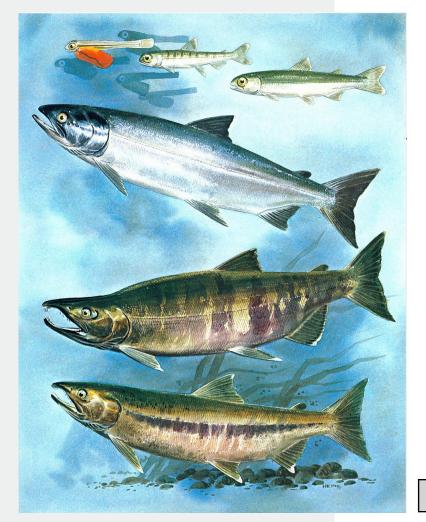
Funded by:

State, federal and nonprofit partners

Cost to landowners:

• \$0

RETURN OF THE REDDS PROJECT AREA



CHUM SALMON: A QUICK OVERVIEW

Oncorhynchus keta is a Pacific salmon, also known as dog, keta and silverbrite salmon. The name chum comes from the Chinook Jargon term tzum, meaning "spotted" or "marked," while keta (the species name) comes from the Evenki language of Eastern Siberia via Russian.

CHUM SALMON: A QUICK OVERVIEW

Why focus on chum?

spawning habits, improving habitat, adding nutrients

Are chum in trouble?

vulnerable habitat, on the decline, threatened species

The chum lifecycle

• spawning in lower reaches, peaking in Nov., 3-6 years at sea

Chum and the food web

providing nutrients for critters, bugs and humans

WHAT DOES RESTORATION MEAN?

Habitat Structure Restoration:

- A project-based approach
- Add large wood, increase off-channel wetlands, protect riparian areas/floodplains, remove invasive species, replant native vegetation

Ecological Process Restoration:

- A long-term approach
- Build relationships and trust with new partners, stream surveys, decommission roads no longer in use, identify areas to upgrade

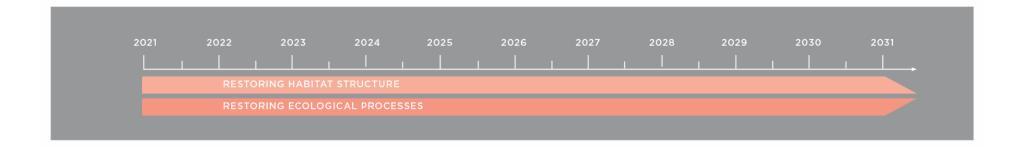
LANDOWNER AND STEWARD PARTNERS

One of the most important aspects of Return of the Redds is landowner and land steward participation. Restoring stream habitat is good for fish **and** good for folks.

LANDOWNER AND STEWARD PARTNERS

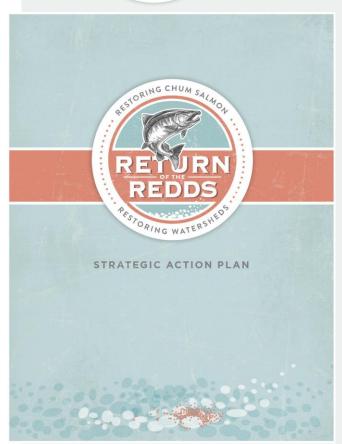
Return of the Redds will be asking landowners and land stewards to be a part of the project in a variety of important ways including:

- Sharing the history of their waterways
- Becoming part of the community of RREDDs partners
- Permitting one-time access for stream assessment
- Considering restoration of waterways on their property
- Participating in informational events and gatherings

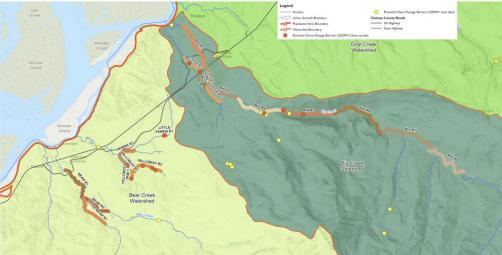

• Staying in touch, reporting future waterway changes

2021 - 2022 TIMING

We are currently working on landowner outreach and planning. Stream assessment and restoration will begin in 2022.


RREDDS STRATEGIC ACTION PLAN

The Return of the Redds Strategic Action Plan (available online) is a detailed roadmap illustrating all the steps needed to reach our goal from beginning to end including:


- Development process with RREDDs partners
- Executive summary and overview
- History and historical context
- Economic importance
- Metrics for measuring success
- Past successful case studies
- Project area and species data
- Priorities, objectives, monitoring and evaluation



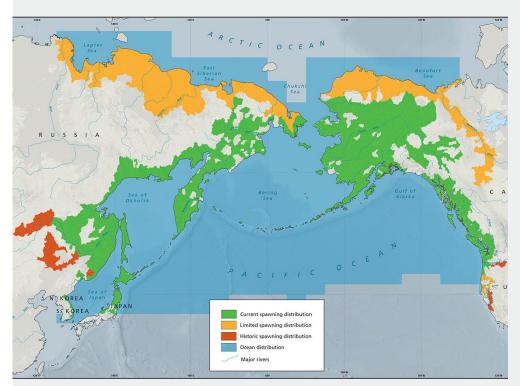
A STRATEGIC ACTION PLAN IS FORMED!

Agenda Item #3.

LANDOWNERSHIP

LAND USE/ OWNERSHIP (AND MANAGEMENT)	BIG CREEK POPULATION AREA ACRES (%)	YOUNGS BAY POPULATION AREA ACRES (%)	TOTAL
Federal	215 (0.3%)	1,213 (0.9%)	1,428
State Forest (Managed by ODF)	18,415 (24.8%)	11,307 (8.4%)	29,722
State (Other Agencies)	119 (0.2%)	5,205 (3.9%)	5,324
Clatsop County	51 (0.1%)	167 (0.1%)	219
Local Government	4,102 (5.5%)	1,309 (1.0%)	5,411
Private	51,381 (69.2%)	115,155 (85.7%)	166,537
TOTAL	74,283	134,356	208,641

Agenda Item #3.


HISTORIC HABITAT

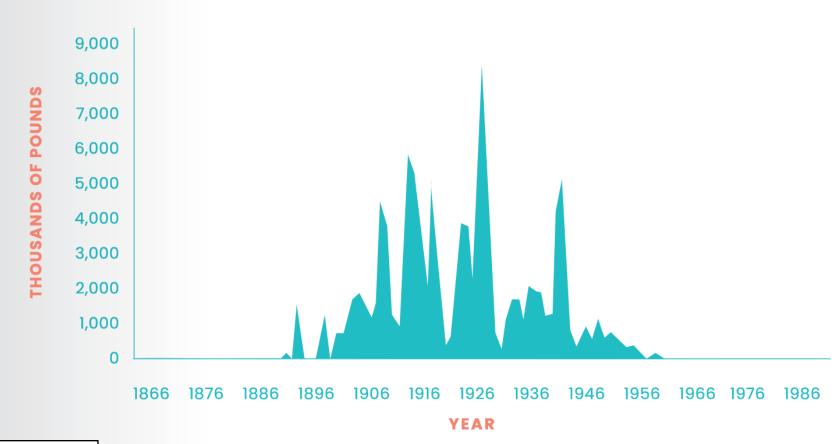
Washington

State Park

Elochoman

Grays

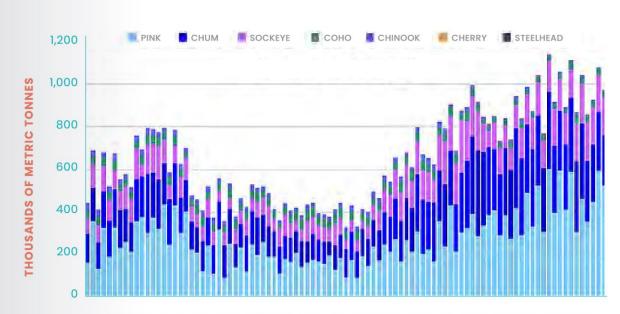
Global Chum Habitat - Pacific salmon atlas - The Wild Salmon Center


Big Creek Channel-Columbia Longview Clatskanie Kalama River Youngs River Lewis River Upper Scappoose Gorge Legend Creek Evalutionarily Significant Unit (ESU) Creek-Frontal Major Population Groups (MPG) 84 Washougal Columbia Rive Chum Watersheds The Dalles Sandy River Upper Gorge Tribs Lower Gorge Tribs Clackamas River Washougal River Sandy River Salmon Creek Newberg Lewis River Mt. Hood National Fore Oregon Kalama River Cowlitz River Clackamas Scappoose Creek Mill Creek Date Exported: 11/8/2021 4:57 Clatskanie River Elochoman River Grays & Chinook Rivers Map Author: Graham Klag Big Creek Warm Springs Youngs Bay Reservation Columbia River FIGURE 1. The 17 Historical Chum Populations in Oregon and Washington Comprising the Columbia River Chum Evolutionarily Significant Unit (ESU). Source: Wiley 2021 Page 26

Cowlitz River

Yakama Nation Reservation

THE CHUM SALMON COLLAPSE



Agenda Item #3. Columbia River Chum Processed in Thousands of Pounds, 1866 to 1986. By the 1960s, Very Few Chum Were Present. Source: Johnson et al. 1997

THE CHUM SALMON FISHERY

1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

COMMERCIAL CATCH (WEIGHT)

FIGURE 5. Annual Commercial Salmon Catch by Weight (Thousands of Metric Tonnes) 1951-2019. Source: North Pacific Anadromous Fish Commission 2020

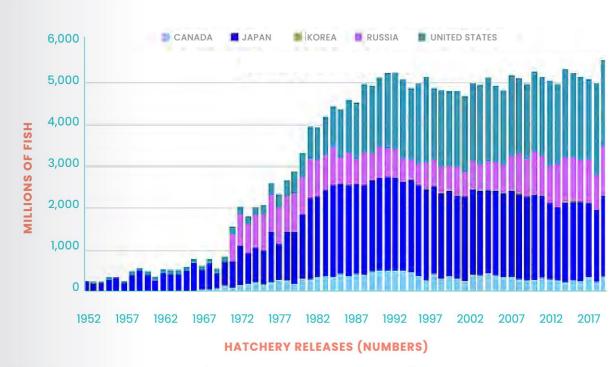


FIGURE 6. Total Hatchery Production (U.S., Canada, Korea, Russia, and Japan) of Pacific salmon, 1951-2019. Source: North Pacific Anadromous Fish Commission 2020

Agenda Item #3.

PROPERLY FUNCTION CONDITIONS V. EXISTING

AQUATIC HABITAT BENCHMARK	UNDESIRABLE	DESIRABLE	
LARGE WOOD:			
Key pieces (≥60 cm diameter and ≥10m long per 100 m (328	3 ft.) ≤1	≥3	
Number of pieces (per 100 m/328 ft.)	≤10	≥20	
POOLS:			
Pool frequency (number channel widths between pools)	≥20	≤5 - 8	
RIPARIAN CONIFERS (30 m from both sides):			
Number>50-cm dbh/305m (1000 ft.) stream length	≤150	≥300	
Number>90-cm dbh/305 m (1000 ft.) stream length	≤ 75	≥200	
SUBSTRATE:			
% fines in riffles (≤2 mm diameter)	≥15%	≤8%	
% gravel in riffles (2-64 mm diameter)	≥54%	≤10%	

TABLE 2. ODFW Aquatic Habitat Benchmarks

Agenda Item #3.

Chum Population Area	Subwatershed	ODFW Chum Stream & Reach Designation	Stream Survey Year	Length (m)		Number of LW Pieces/ 100 m (≥20)	Pool Frequency (Channel Width b/t Pools) (≤5-8)	Number of Conifers/ 1000 ft > 50 cm dbh (≥300)	Substrate Condition (% Fine in Riffles) (≤8%)
Big Creek	Lower Big Creek	Reach 1	2007	1555	(0)	(3.1)	(12.1)	- (0)	- (25)
		Reach 2	2007	759	(0.2)	(8.1)	+ (7.6)	(30)	(15)
		Reach 3	2007	1200	(0.1)	(11)	+ (6.2)	(30)	(15)
		Reach 4	2007	1830	(0.8)	+ (30.6)	+ (3.2)	(122)	(15)
	Upper Big Creek	Reach 5	2007	1729	(0)	(8.7)	+ (5.4)	- (15)	(16)
		Reach 6	2007	2478	(0.2)	(8.1)	+ (4.6)	(0)	(17)
		Reach 7	2007	1950	(0.1)	- (11)	+ (4.2)	(12)	(15)
		Reach 8	2007	2061	n/a	n/a	+ (4.4)	(20)	n/a
Big Creek	Big Creek Little Creek	Reach 1	2008	750	(0.6)	(7.3)	(14.4)	(49)	(38)
		Reach 2.1	2008	666	(0)	(5.3)	(90.5)	(0)	n/a
	Reach 2.2	2008	805	n/a	n/a	n/a	n/a	n/a	
	Bear Creek	Bear 1	2008	1516	- (0.9)	+ (20.0)	+ (6.3)	(91)	(12)
		Bear 2	2008	1112	- (1.7)	(11.5)	- (20.5)	(61)	(13)
		Little Bear 1	2008	1434	(1.1)	(12.6)	+ (4.0)	(0)	(18)
	Ferris-Hill Crest Creek	Ferris Creek Reach 1	2008	550	(0.4)	(6.8)	(8.8)	(91)	(31)
	Hill Crest Creek Reach 1	2008	436	(0.5)	(9.4)	(15.4)	(41)	- (55)	
		Hill Crest Creek Reach 2	2008	1688	(0.9)	(5.6)	n/a	n/a	(48)
		Little Ferris 1	2008	550	(2.7)	+ (24.6)	(19.0)	(30)	(20)
	Mill Creek	Reach 1	2008	668	(0.6)	(6.4)	+ (3.2)	(61)	(66)
		Reach 2	2008	496	(1.0)	(11.0)	n/a	- (0)	(46)

TABLE 3. Habitat Benchmarks for ODFW Chum Spawning Habitat Evaluation Reaches within the Big Creek Chum Population Area. Table Header Number in Parenthesis = Benchmark Value. Mir Does Not Meet the Benchmark. Plus Symbol (+) = Meets or Exceeds Benchmark. Reach in Parentheses = Observed Habitat Value.

LARGE WOOD INSTREAM SOUTH FORK MCKENZIE

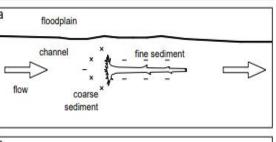
Agenda Item #3.

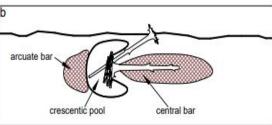
USFS Page 30

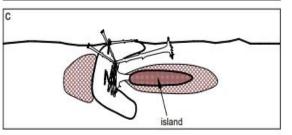
EVOLUTION OF A GRAVEL BAR

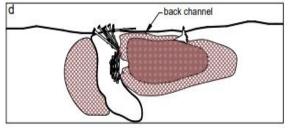
Large Wood and Log Jams Figure 2.

Visual and physical isolation provided by a rootwad for juvenile coho salmon.


(photo from NF Stillaguamish River, Snohomish County, Washington, Source:




Large Wood and Log Jams Figure 3.


LW placed on the floodplain will provide low velocity refuge during high flows.

(Finney Creek, Skagit County, Washington).

Large Wood and Log Jams Figure 1. Schematic of side channel formation against the bank at a logjam (courtesy Tim Abbe). Morphological stages in alluvial topography associated with construction of a woody debris (barapex) jam. (a) Deposition of an especially large tree with the root wad intact. (b) Formation of a coarse gravel bar upstream, a crescent-shaped pool immediately upstream of the root wad, and a downstream central bar of finer sediments a axis of the tree. (c) Island development along the central bar. (d) Integration into the broad floodplain. Modified from Abbe and Montgomery (1996).

Agenda Item #3.

Page 31

COMPLEX HABITAT

Fig. 2 Time sequence photos of pre-and post-project conditions for ELJs re-directing flows on the Hoh River, Jefferson County, WA.

THE WATERSHED PROCESSES

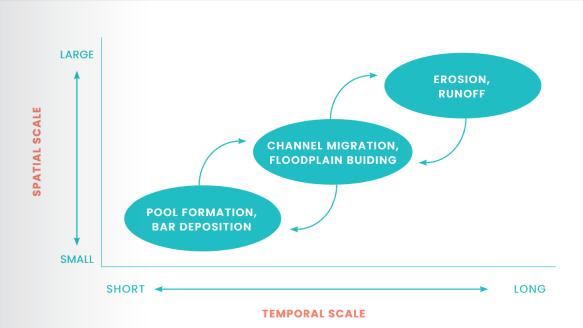
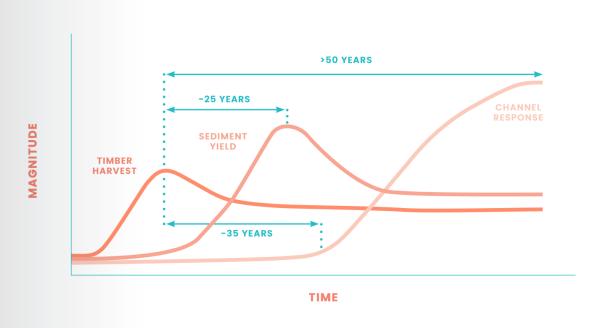



FIGURE 10. Watershed Processes Operate at a Variety of Space and Time Scales, with Processes Operating at Larger Spatial Scales and Influencing Processes Operating at Smaller Scales (Heavy Arrows). In this Case, Large-scale Erosion and Water Runoff Influence Channel Migration and Floodplain Formation at Medium-Spatial Scales, and Pool Formation and Bar Sediment Deposition at Fine-Scales. Source: Beechie et al. 2010

FIGURE 11. Conceptual Model of Trends of Sediment Yield in the Upper Grays River Channel Network and Channel Response over Time from Historical – Before Modern Forest Practices Rules – Timber Harvest and Forest Roads. Source: May and Geist 2006

UPDATING FOREST PRACTICES

Rearing Grounds and Riparian Habitat

What Oregon Dept. of Forestry does for RREDDs?

Riparian Buffers

Hydrological connectivity

Wet weather haul restrictions

Transportation system planning

Stream restoration and enhancements

WATERSHED PRIORITIES

POP. AREA	WATERSHED/ PRIORITY	SUBWATERSHED AND REACH	NOTES / RESTORATION APPROACH
Big Creek	Big Creek	Estuary Transition (R1)	Most of the area is protected
	/1st-Tier Priority (Higher Priority)	Lower (R2-4)	Key historical chum spawning area and habitat restoration
		Middle	Process-based restoration
		Upper	Process-based restoration
	Little Creek /2nd-Tier Priority		Targeted Opportunities: Process- based and habitat restoration
	Farris Creek /2nd-Tier Priority		Targeted Opportunities: Process- based and habitat restoration
	Bear Creek /2nd-Tier Priority		Targeted Opportunities: Process- based and habitat restoration
	Gnat Creek /3rd-Tier Priority (Lower Priority)	Targeted Opportunities: Process- based and habitat restoration

POP. AREA	WATERSHED/ PRIORITY	SUBWATERSHED AND REACH	NOTES / RESTORATION APPROACH
Youngs Bay	Lewis and Clark River /Highest Priority	Estuary Transition	Key historical spawning area: Habitat restoration in the estuary and lower ends of tributaries
		Lower (R1-5)	Key historical spawning area: Habitat restoration in the river and lower ends of tributaries
		Middle	Process-based restoration
		Upper	Process-based restoration
	Klaskanine River /2nd- Tier Priority		Targeted Opportunities: Process- based and habitat restoration
	Youngs River /2nd-Tier Priority		Targeted Opportunities: Process- based and habitat restoration
	Wallooskee River /3rd-Tier Priority		Targeted Opportunities: Process- based and habitat restoration
	Skipanon River /3rd-Tier Priority (Lower Priority)	Targeted Opportunities: Process- based and habitat restoration

Agenda Item #3.

Page 35

CHUM SALMON RESTORATION

POPULATION	FISH	LARGE WOOD	FLOODPLAIN/	SIDE-CHANNEL	RIPARIAN
	BARRIERS	PLACEMENT	OFF-CHANNEL	CREATION	PLANTING
	ADDRESSED	(MI) ¹	ENHANCEMENT	(MI)	(MI) ²
	(#)		(ACRES)		

RESTORATION	OUTPUTS FO	R BROAD SENSE REG	COVERY		
Youngs Bay	NA	46	1.3	0	19
Big Creek	NA	58	5.1	5	19
ACCOMPLISH	MENTS (THRO	UGH 2019)			
Youngs Bay	4	3.01	0.1	0.75	2.27
Big Creek	4	0.75	2.1	0.42	2.15

TABLE 8. LCR Plan Restoration Outputs Necessary to Achieve Broad-Sense Recovery and Accomplishments through 2019 for Big Creek and Youngs Bay Salmon Populations

NOTES: 1. Large wood placement volume – 706 ft.3 (20 m3) of large wood per 328 ft. (100 m) of stream channel

2. Riparian Planting 98 ft. (30 m) width on each side of the stream channel

OREGON LOWER ABUNDANCE COLUMBIA RIVER		IDANCE	POTENTIAL RECOVERY GOAL RANGE (CUMULATIVE FOR THE FOUR POPULATION AREAS)			
POPULATION AREA	RECENT	HISTORICAL	LOW	MEDIUM	HIGH	
Youngs Bay	15	9,000	2,500			
Big Creek	299	5,000			7,500	
Clatskanie	3	6,000		5,000		
Scappoose	0	500				

TABLE 9. Recent and Historical Abundance and the Potential Cumulative Recovery Goal Range for the Numbers of Chum Adults Returning to the Four Oregon Population Areas (Columbia Basin Partnership Task Force 2020)

RESTORATION AND ENHACEMENT

Upper Big Creek Floodplain Restoration - 2021

RESTORATION AND ENHACEMENT

North North Fork Klaskanine River Fish Passage Project - 2022

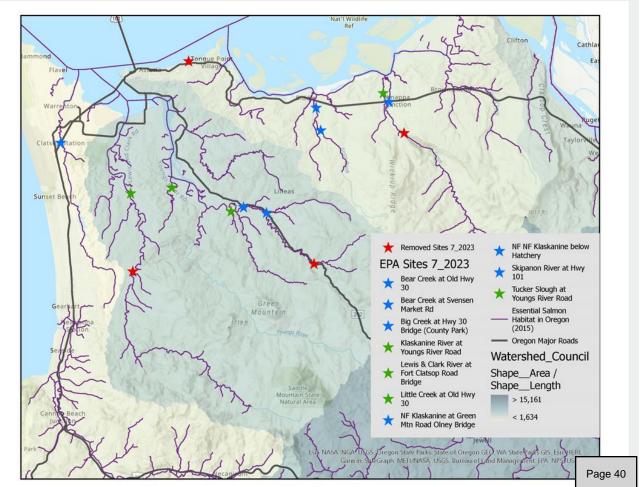
RESTORATION AND ENHACEMENT

Blind Slough Wetland Reconnection - 2022

Testing for Roadway Runoff Chemicals

Objectives

Data gaps


First sampling for 6PPD-Q in our area

Educational gaps

• CCC, high schools, community

Data Sharing

- Oregon DEQ's Ambient Water Quality Monitoring System (AWQMS)
- EPA's Water Quality Exchange (WQX)
- Public and Partners

Targeted Chemicals in River TALC

River TALC: Toxics Assessment of the Lower Columbia

(+)1,3-Diphenylguanidine (+)Hexa-(methoxymethyl)melamine
(+)Hexa-(methoxymethyl)melamine
(+)N-cyclohexyl-1.3-Benzothiazole-2-amine (NCBA)
6PPD-quinone
Benzothiazoles & Benzotriazole
⁽⁺⁾ Benzotriazole
⁽⁺⁾ 5-methyl-1-H-Benzotriazole
⁽⁺⁾ 2-amino-Benzothiazole
^(*) 2-hydroxy-Benzothiazole
(+)2-(4-morpholinyl)Benzothiazole
Pesticides
(+)Clothianidin
⁽⁺⁾ Imidacloprid
⁽⁺⁾ Thiamethoxam
⁽⁺⁾ Fipronil
(+)Carbendazim
⁽⁺⁾ Iprodione
⁽⁺⁾ Pentachlorophenol
⁽⁺⁾ Diazinon
⁽⁺⁾ Diuron
⁽⁺⁾ Mecoprop
⁽⁺⁾ Prometon
⁽⁺⁾ 4-Nitrophenol

Pharmaceuticals and personal care products (PPCP)
⁽⁺⁾ Caffeine
⁽⁺⁾ Cetirizine
⁽⁺⁾ Cotinine
(+)DEET
^(*) Diclofenac
^(*) lbuprofen
⁽⁺⁾ Metformin
^(*) Triclosan
Industrial/Commercial chemicals
(+)1,3-Dicyclohexylurea
^(*) Bisphenol A
^(*) Caprolactam
^(*) 4-Nonylphenol
^(*) 4-tert-Octylphenol
Substituted diphenylamine antioxidants & benzotriazole UV stabilizers (SDPA & BZT-UV)
(+)SDPA-diAMS
⁽⁺⁾ SDPA-C4C8
⁽⁺⁾ SDPA-C8C8
⁽⁺⁾ SDPA-C9C9
⁽⁺⁾ BTZ & UV-234
⁽⁺⁾ BTZ & UV-326

6PPD-Quinone

Figure 2: Reaction of 6PPD with ozone (O3) to produce 6PPD-quinone.


- One of the most deadly chemicals in roadway runoff (23; 24).
- Has been linked to the observed sudden coho death in the Puget Sound area (24)
- Potentially caused by malfunction of the blood brain barrier (26)

- Coho
- Coastal cutthroat trou
- Steelhead
- Chinook
- Sockeye
- Chum

- Eye development
- Slower/less vigorous
- More research needed
- LC₅₀=95 ng/L (Center for Urban Waters)
 - Results vary 40-100 ng/L

Initial Results: November 2022 (5 sites sampled)

Site	<u> </u>	Contaminants 🔼	Concentrations 🔼
Skipanon River at Hwy 101	11/22/2022	1,3-diphenylguanidine	163
		hexa-(methoxymethyl)melamine	197
		N-cyclohexyl-1.3-benzothiazole-2-amine	36
		6PPD-quinone	56.4
		benzotriazole	16
		5-methyl-1-H-benzotriazole	135
		2-amino-benzothiazole	18.2
		2-hydroxy-benzothiazole	109
		2-(4-morpholinyl)-benzothiazole	80.4
		Caffiene	36.9
		cotinine	4.3
		DEET	9.1
		1,3-dicyclohexylurea	38
NF Klaskanine River at Green Mountain Rd Bridge	11/22/2022	1,3-diphenylguanidine	45.6
		hexa-(methoxymethyl)melamine	29
		N-cyclohexyl-1.3-benzothiazole-2-amine	13.2
		6PPD-quinone	14.2
		5-methyl-1-H-benzotriazole	67
		2-hydroxy-benzothiazole	61
		2-(4-morpholinyl)-benzothiazole	25.3
		Caffiene	16.1
		1,3-dicyclohexylurea	14.6

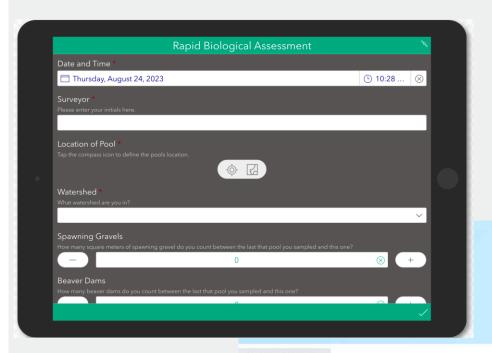
Initial Results: November 2022 (5 sites sampled)

NNF Klaskanine River above Hatchery	11/22/2022	1,3-diphenylguanidine	13.8
		hexa-(methoxymethyl)melamine	8.3
		N-cyclohexyl-1.3-benzothiazole-2-amine	3.8
		6PPD-quinone	5.1
		5-methyl-1-H-benzotriazole	14.3
		1,3-dicyclohexylurea	3
Columbia River at Pier 39 Riverwalk	11/22/2022	1,3-diphenylguanidine	4.1
		benzotriazole	17.4
		5-methyl-1-H-benzotriazole	17.9
		caffeine	14
		cetirizine	2.5
		DEET	6.5
Lewis & Clark River .8 Miles S of Melville	11/22/2022	1,3-diphenylguanidine	3.8

Agenda Item #3.

Outreach and Potential Mitigations

- CCC guest lecture + field day with 2 introductory biology classes
 - Will repeat this fall
- 2 high school presentations
- 2 community presentations
 - Upcoming: Astoria Sunday Markets & KMUN Block Party
- Volunteers
 - CCC
 - Astoria High School
 - 21 hours combined thus far


- Mapping areas where mitigation is needed
- Bioswales/vegetated strips
 - Similar performance to filtration systems—removal of 85% of suspended solids (29)
- Permeable pavement
- Infiltration trenches
- Tire manufacturing practices
 - 6ppd alternatives currently in R&D

Rapid Biological Assessment and Limiting Factors Analysis Light

Snorkel surveys with Bio-Surveys LLC to count juvenile salmon and trout

assess habitat factors

Electronic data collection and GIS mapping of survey results

Esri, CGIAR, USGS | Esri, CGIAR, USGS | Oregon State Parks, State of Oregon GEO, WA State Parks GIS. E

Beaver Dams Random Sample Pool Type Pool Length Pool Width

0 Yes Dammed Pool 25 10

0 Yes Laterial Scour Pool 30 8

Page 46

Agenda Item #3.

North Coast Watersheds Web Map

Developing a map of all restoration and enhancement projects for our watersheds

- Watershed restoration and enhancement projects completed, current and desired future projects
- Water quality monitoring historic, current, and desired future water quality data collection sites
- Owner and partnerships resources Landowner and partnership resource information available for restoration and enhancement
- Watershed history, habitats and vegetation Watershed human history and historic habitat types overtime
- Fish and wildlife distribution Geolocation information on the historic, current, and essential habitats for species of
- concern

North Coast Watersheds Web Map

Focus areas of project development

Electronic data collection using Esri ArcGIS Survey123
Five applications in development to collect stakehold data on *Water, Plants, Fish, Wildlife and Habitat*

Community watershed mapping for restoration project scoping beginning in our three service areas

Non-native Invasive Species Management

Riparian Planting

Water Quality Monitoring

THANK YOU FOR WATCHING

Questions?

https://www.youtube.com/watch?v=TezU94ptQ9Y

THANK YOU!

