
THE OREGON ESTUARY PLAN BOOK

THE OREGON ESTUARY PLAN BOOK

STATE OF OREGON Neil Goldschmidt, Governor

DEPARTMENT OF LAND CONSERVATION AND DEVELOPMENT James F. Ross, Director

1987

Published 1987

Oregon Department of Land Conservation and Development 1175 Court Street NE Salem Oregon 97310

FUNDING

The Oregon Estuary Plan Book was prepared with funds from the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management, under a Coastal Program Implementation Grant (Section 306);

State of Oregon Department of Land Conservation and Development

BY

Robert Cortright Jeffrey Weber Robert Bailey

EDITORIAL ASSISTANCE

Mitch Rohse Patricia Snow Starla Hill

MAP PREPARATION

Oregon Department of Energy, Geographic Information Services Section.

Scott Smith Marty Lister John Sharrard

Maps and areal information included in the Estuary Plan Book were generated by the Department of Energy's Geographic Information Services Section. DOE uses an Arc/Info GIS system. Like other geographic information systems, DOE's stores both mapped information and data regarding specific points, lines, and areas (or polygons) shown on the maps. The GIS makes it possible to generate a variety of maps and data for analysis of estuary plans and habitat, the two major themes currently on the map base.

ODOE hardware used to prepare maps and generate initial reports includes a Prime 2655 super minicomputer, a Tektronix 4125 color workstation; a Numonics 3' X 4' digitizing tablet with a Tektronix 4207 monitor; and a Calcomp 1044 GT 34'' wide continuous plotter. DLCD intends to update maps and expand the data files to keep track of plan amendments and approved development projects.

MAP SOURCES

Oregon Division of State Lands, Estuary Maps, 1972-73. Oregon Department of Fish and Wildlife, Estuary Habitat Maps, 1978-79. Comprehensive Plan and Zoning maps from acknowledged comprehensive plans for Oregon's coastal cities and counties.

CARTOGRAPHIC ASSISTANCE

Jeffrey Weber Gail McEwen Anthony Selle Julie Spielman David Fox

DATA BASE DEVELOPMENT

Jeffrey Weber Lloyd Chapman Gay Brousseau

ESTUARY HABITAT INFORMATION

Chapter Three is adapted from the Oregon Department of Fish and Wildlife's 1979 publication "Habitat Classification and Inventory Methods for the Management of Oregon Estuaries."

Dan Bottom Becky Kreag Frank Ratti Cyndi Roye Rick Starr

GRAPHICS, ILLUSTRATIONS, AND DRAWINGS

Robert Bailey

BOOK DESIGN AND LAYOUT

Robert Bailey Robert Cortright

TYPESETTING

Oregon State Printer, Salem, Oregon.

PHOTOGRAPHIC SOURCES

Engineering Division, Portland District, US Army Corps of Engineers. Oregon Department of Fish and Wildlife Oregon Department of Transportation Oregon Department of Land Conservation and Development

COVER ILLUSTRATION

The Alsea Bay Bridge and estuary are from a 1936 drawing by F.G. Hutchinson. Drawing provided courtesy of the Oregon Department of Transportation. The Alsea Bay Bridge and the other McCulloch bridges across Oregon bays symbolize the objective of estuary planning: to provide for needed development in a manner that harmonizes with and protects estuarine values.

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1

PLANNING

HABITAT C

INDIVIDUA

Columbia River Necanicum River

Nehalem Bay Tillamook Bay Netarts Bay Sand Lake Nestucca Bay Salmon River

Siletz Bay Yaquina Bay Alsea Bay Siuslaw River Umpqua River/Smith River

Coos Bay Coquille River Rogue River Chetco River

APPENDIX

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

ESTUARIES IN OREGON Subsystems of Oregon Estuaries Forces That Creat Estuaries In Oregon	1
PLANNING REQUIREMENTS The Path To Estuary Planning Land Use Planning: An Overview Estuary Planning Requirements Estuary Classification Management Unit Designation Project Review	7
Shoreland Planning Requirements Coastal Shoreland Uses Special Shoreland Sites	
HABITAT CLASSIFICATION Classification System Estuarine Subsystems Habitat Classes	21
COASTWIDE SUMMARY OF OREGON'S ESTUARY PLANS	27
INDIVIDUAL ESTUARY MANAGEMENT PLANS Columbia River	35

121

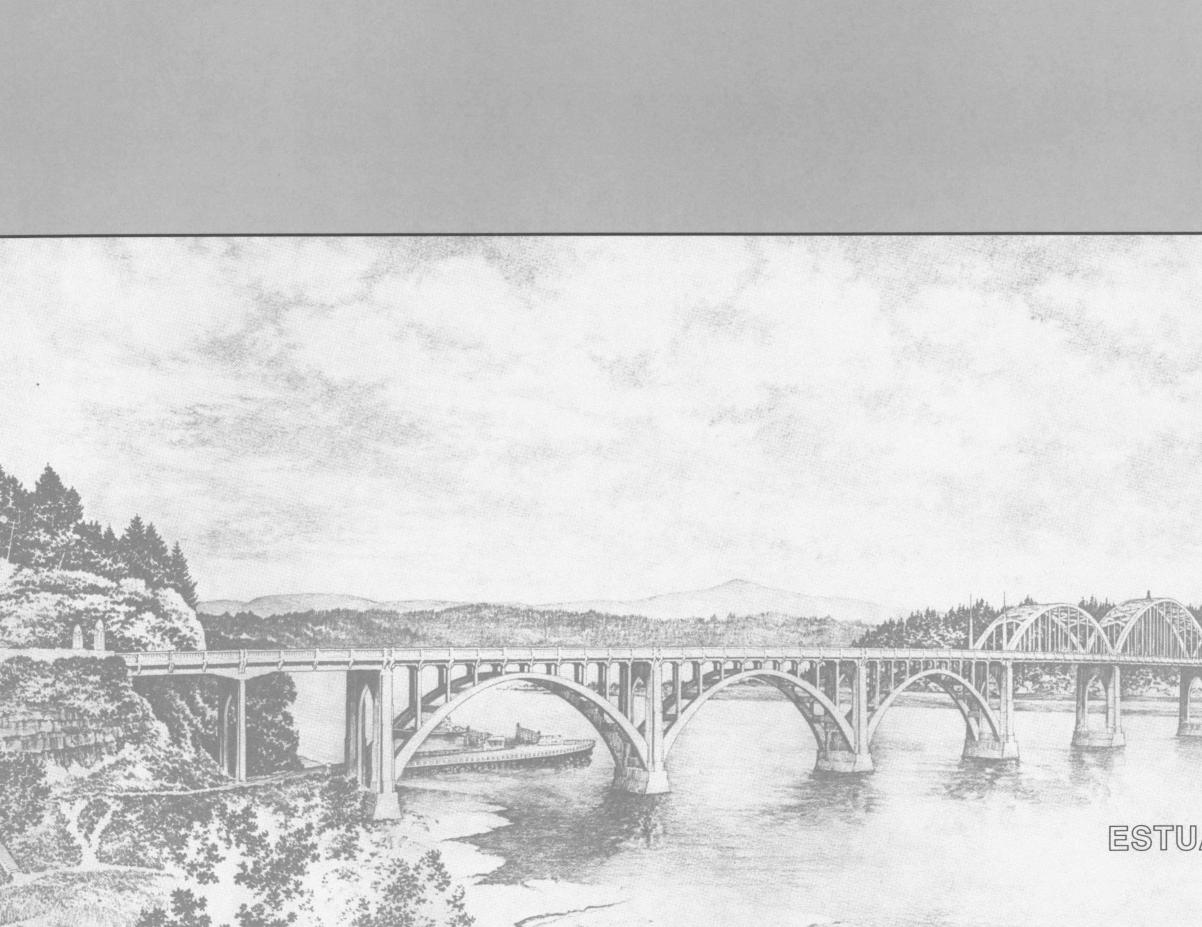
INTRODUCTION

Oregon's estuary management plans balance the need to protect estuarine resources with the need to allow an appropriate level of estuarine and shoreland development.

Striking a balance between protection and development is not easy. Estuaries are complex, intricate, and enormously valuable ecosystems. Our understanding of exactly how estuaries work is limited, and development pressures are great. Serving as the link between free-flowing rivers and the sea, they play a crucial role in the food chain and life cycles for numerous species of fish, shellfish, and wildlife. Estuaries are also important for commerce, navigation, and recreation. They support recreational and commercial fishing and the transportation of forest products and other goods. In fact, almost every sector of the coastal economy depends at some point upon estuarine or shoreland resources for its vitality.

Over the past century, the ecological value of Oregon's estuaries has been dramatically compromised by human activities. Large productive tidal marshes have been diked and converted to pasture land. Tidelands and marshes have been filled to provide waterfront sites for industrial and commercial development. In some cases, nearly a quarter of the estuary has been permanently lost to development.

In the 1970's, concern about the future of our estuaries led the state and federal government to adopt laws to protect estuaries from inappropriate development. These laws require permits any time dredging or filling of estuaries is proposed. Although the regulations include strong standards limiting when dredging and filling are allowed, they only address development issues on a project-by-project basis. Both environmentalists and developers have been frustrated by this system, since neither is assured that its long-term interests are provided for.


Between 1971 and 1976, Oregon developed detailed policies to guide planning for the use of all lands in the state, including its estuaries and other coastal resources. The state's planning requirements for estuaries are embodied in Statewide Planning Goals 16 and 17. Goals 16 and 17 also constitute a large part of the state's overall estuary management program.

Since 1977, coastal cities and counties have prepared plans for all of Oregon's estuaries that implement the LCDC-adopted Goals. These plans, developed with input from various natural resource agencies and interested citizens, are based on the best available information about estuarine resources and their value. Estuary plans make overall decisions about what areas of each estuary will be preserved, conserved, or developed. The plans also establish procedures and standards for the consideration, by local governments and state and federal agencies, of individual development activities.

The maps included in this book show the results of estuary planning for Oregon's 17 largest estuaries. They show the location of various types of habitat and adopted plan and zone designations. Data provided along with the maps show how various estuarine habitats and adjacent shorelands are to be managed.

This book is intended as a guide to estuary plans for citizens, officials, and planners who are interested in Oregon's estuaries. In a very real way, the plans described here chart the future of Oregon's estuaries . . .

ESTUARIES IN OREGON

CHAPTER ONE

INTRODUCTION

stuaries are special places where ocean and river mingle to create a dynamic, diverse, and highly productive environment. Plants and animals thrive in this unique environment driven by sunlight and the daily tides. Humans, too, are drawn to the estuary to harvest food, travel on its waters, and claim the flat lands for the purposes of civilization.

Twice each day, Oregon's estuaries are the stage for a slow, stately drama influenced by the moon, the sun, the wind, and the rain. Sinuous channels, branching and winding across the broad mud flats, are filled with incoming ocean waters. As the channels fill, the rising tide spreads slowly across the flat mud. The ever-deepening waters lift the eelgrass, fill the myriad burrows of little creatures, and creep into tiny channels that penetrate the fringing salt marshes. Finally, the waters surge upstream to the edge of the forest and gently lift trailing branches of rhododendron and cedar. The estuary is full.

For a moment, the drama pauses. Then as the earth turns, the ocean's push becomes a pull, and the waters of the estuary recede. Before long, logs at the edge of the salt marsh are grounded on the mud, the eelgrass lies limp and flat, and tiny creatures are stranded in isolated pools of water warming in the sun. Clam diggers move carefully across the muddy flats toward the edge of the winding channel. But in a short time, the cycle will begin again.

ESTUARIES IN OREGON

he large number of estuaries on the Oregon coast belies the fact that Oregon's total estuarine acreage is relatively small. Except for the Columbia River, all of Oregon's major and minor estuaries (approximate area of 53,000 acres) could fit inside of Grays Harbor estuary in Washington (approximately 58,000 acres). Most of the larger estuaries have been altered through dredging, filling or diking. Many of the smaller ones have escaped the impacts of civilization and remain in a natural state. In any case, all are important and are covered by Oregon's estuarine management program.

Distribution Along the Coast

he distribution of estuaries along the Oregon coast reflects the geology and topography of the mountains that meet the ocean. The Columbia River estuary overwhelms all the other estuaries on the coast. One of the major river systems in North America, the Columbia River has maintained its westward flow from the Rocky and Selkirk mountains across the rising Cascade and Coast Range mountains to empty into the Pacific. The present day estuary is a recent feature. Geologists now recognize that the Columbia once flowed across the Oregon country through long-eroded landscapes to the south of its present course, and may have once discharged its waters somewhere nearer Yaquina Bay.

WHAT IS AN ESTUARY?

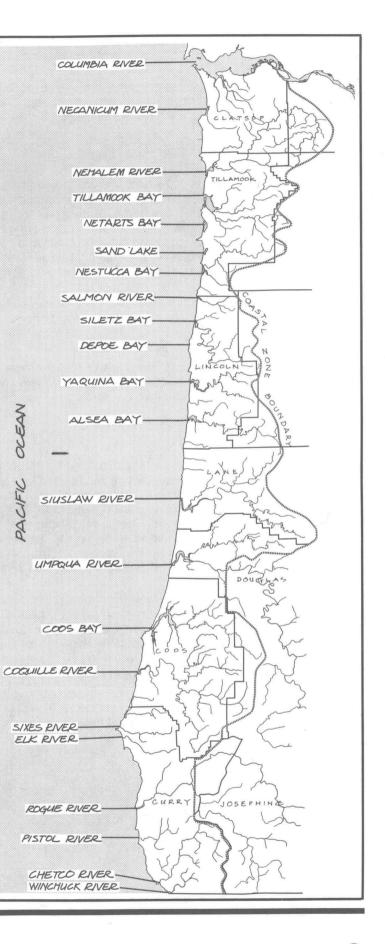
An estuary is defined as a semi-enclosed body of water, connected to the ocean, where salt water is measurably diluted with fresh water from the land. In reality, an estuary ... or bay ... is a whole lot more. It is a zone of transition between the marine-dominated systems of the ocean and the upland river systems, a zone where the mix of the two yields one of the most biologically productive areas on Earth.

From the Columbia River estuary south to Cascade Head, the mountains are a complex mix of more recent sedimentary and volcanic rocks. Except for the wide valley carved by the several rivers now feeding Tillamook Bay, and Nehalem Bay at the mouth of the winding Nehalem River, the estuaries on the north coast tend to be small, fed by streams which drain small watersheds, and enclosed in indentations between rugged headlands and sand spits. Netarts Bay, Sand Lake and Salmon River are such estuaries.

Between the Salmon River estuary at Cascade Head and the Coquille River far to the south are the estuaries of Siletz Bay, Yaquina Bay, Alsea Bay, the Siuslaw and Umpgua rivers, and Coos Bay. Along this portion of the coast, the mountains are mostly older marine sediments and sands, clays, and muds eroded from ancient mountains to the south and east. Deposited on the ocean floor in a great trough from the Klamath Mountains to Vancouver Island, these sediments were uplifted by the force of colliding continents and eroded once again to create relatively wide river mouths. Rising seas filled these river valleys with sediments and created the conditions for present-day estuaries.

South of the Coquille River estuary at Bandon, there are few estuaries. Along this stretch of coastline, the hard, resistant cores of the ancient Klamath Mountains withstand erosion from rain, the river and the clawing surf. The gradient of the rivers and creeks are steep even at the ocean's edge. The Rogue, Elk, Sixes, Chetco and Winchuck Rivers have almost no tidelands. These rivers flow directly into the ocean.

Types of Estuaries


There are several types of estuaries on the Oregon coast.

River dominated: Some, like the Columbia River and Rogue River, are dominated by the freshwater flow of the river and have relatively small tideland areas.

Drowned river mouth: The majority, like Coos Bay, Siletz Bay, and Yaquina Bay, are the drowned river mouth variety, where winter's floods discharge high volumes of sediments through the estuary. In summer, seawater inflow dominates the estuary because streamflow is low.

Bar-built: Others, like Sand Lake and Netarts Bay, are "bar-built," where a sand spit creates a separate estuarine environment which receives very little freshwater inflow. Sand Lake has a watershed of only 14 square miles.

Blind: Some of the smaller estuaries, like Elk River and Sixes River in Curry County, are "blind" estuaries where low river flow in summer results in a sand bar completely closing off the mouth of the estuary.

CIF

2

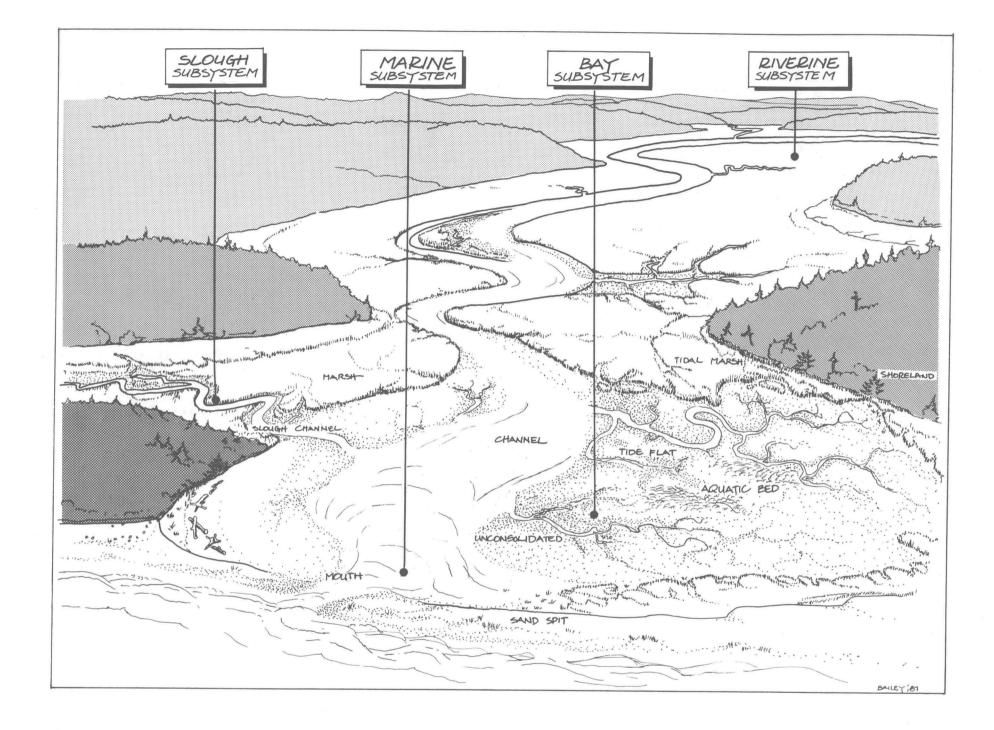
SUBSYSTEMS OF OREGON ESTUARIES

stuaries in Oregon are, in reality, complex systems made up of four major parts or subsystems. These parts blend from one another with no clear demarcation, but each has some distinct characteristics.

Marine

he Pacific Ocean greatly influences the water and the ecology of the estuary near its mouth. The degree of this influence is a product of two major factors linked to the seasons of the year: the amount of freshwater outflow pushing against the ocean's waters (which, in turn, depends upon the size and shape of the drainage basin and the amount of rainfall or snowmelt), and the strength of the tidal surge into the mouth of the estuary (which is influenced by the shape of the channel mouth, the height of the tide and, in winter, storm surge).

In this marine-dominated zone there is a steady mix of marine life into and out of the estuary. The main channel serves as the entrance and exit for many fish and larger invertebrates that take advantage of the food-rich estuarine environment during some part of their life cycle.


Although virtually all Oregon estuaries have some marine component to them, Sand Lake estuary and Netarts Bay are two where the marine component dominates because they lack major freshwater inflow.

Bay

he bay portion of the estuary is characterized by broad mud flats which are exposed to the air at low tide and flooded by a mix of salt and fresh waters at high tide. These flats are not just mud. Sand grains carried from the mountains by the river are deposited in the upper bay and along the edges of main channels, while finer particles of silt and clay drift farther to the edges of the flats near the fringing marshes. Marine sand carried along the ocean front in the "longshore current" is swept into the estuary on incoming tides and may be deposited as far as several miles upstream.

The catalyst for the tremendous productivity of the bay subsystem is the broad expanse of shallow, nutrient-rich water which covers these flats twice a day. This water provides the ideal medium for phytoplanktonmicroscopic free-floating plants-to capture sunlight and thereby continually add energy into the biologic food webs of the estuary. Solar energy drives the collective metabolism of the estuary.

The majority of the larger estuaries on the Oregon coast have extensive bay components. Alsea Bay, Yaguina Bay, Siletz Bay, and Coos Bay, for example, have relatively large bays as part of their estuarine system.

Four Major Subsystems of Estuaries on the Oregon Coast

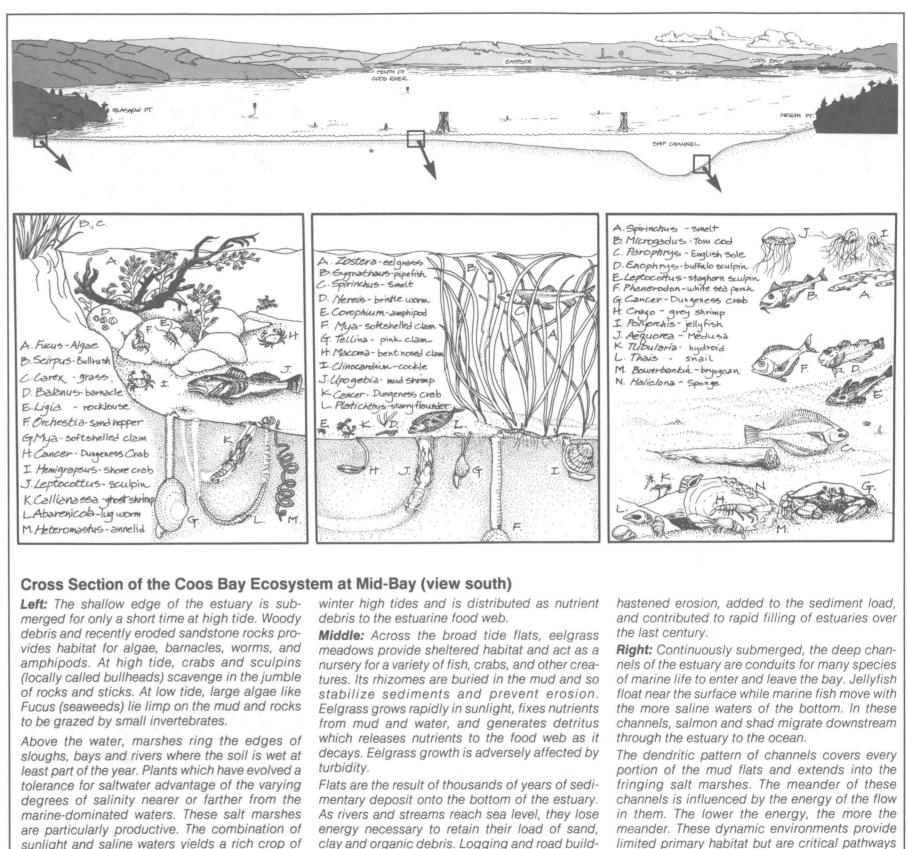
This drawing shows the four major estuarine subsystems at low tide. The riverine subsystem dominates where the river flows from the mountains into the estuary. This wide single channel meanders through marshlands, many of which have been diked for pasture.

A **slough** subsystem occurs where small tributary streams with very little

flow make their way toward the main channel. Salt marshes fringe these drainage ways. The bay is dominated by broad tidal flats of mud and sand. This area will be covered by water at high tide.

At the mouth of the estuary, the surging flood tide brings the marine environment into the estuary.

Slough


S loughs are the smaller tributaries to the main bay and river chan-nels. They have little freshwater inflow. Tidal flushing may not be as nels. They have little freshwater inflow. Tidal flushing may not be as complete as in parts of the estuary that are closer to the ocean or main channel. Generally, sloughs consist of meandering channels that wind through fringing marshes and across mud flats to the main bay. It is these small channels that bring the tide up into the marsh and to the edge of the forest.

Coos Bay, for instance, has a number of sloughs which are relatively large and navigable for several miles, including Isthmus Slough, North Slough, and Catching Slough. In turn, smaller sloughs are tributary to these. South Slough, one of the major tributaries at Coos Bay, does not fit this general description. Rather, it is a separate, miniature estuarine system which shares with Coos Bay a common mouth to the ocean. South Slough was designated the first National Estuarine Sanctuary under a program established by Congress in 1972.

Riverine

D ivers and streams are parts of almost all estuaries on the Oregon Coast. Coastal rivers often reach sea-level many miles inland while still confined by mountains and narrow river valleys (the Siuslaw River at Mapleton or the Umpgua River at Scottsburg). It is here that the tide begins to effect the flow of the river. However, it is not until much further downstream that tide flats begin to appear along the edges of the river and the bay subsystem characteristics prevail. On the Coquille River, for instance, this riverine portion extends to near Myrtle Point, over thirty river miles inland.

The Columbia River estuary is one major Oregon estuary dominated by the riverine component, although the dramatic influence of the river has been tempered by the many dams upstream. Historically, the late spring and summer were seasons of major freshwater discharge from snowmelt far inland. Now, the flow of freshwater is more moderate year round. This change in riverine influence has disturbed the equilibrium between fresh and salt water. The influence of the marine environment has crept slowly upstream. In general, however, the Columbia River continues to dominate its estuary.

sunlight and saline waters yields a rich crop of marsh grass that dies in the fall, is harvested by

ing in the watershed during modern times

between river and ocean.

FORCES THAT CREATE ESTUARIES IN OREGON

he estuaries of the Oregon coast are a unique result of the interplay of geologic forces, ocean conditions, and weather. These forces vary so that no two estuaries are alike, although many are similar.

Geologic Forces

he Oregon coast is part of the geologically active margin of the North American continental plate. This plate is moving slowly westward. As it does, it is overriding the last fragments of the oceanic Juan de Fuca plate, which are moving eastward away from their sub-sea volcanic origins along the Gorda and Juan de Fuca Ridges one hundred miles or so to the west. Forces from this inexorable collision have forced the oceanic plates downward and uplifted and crumpled the entire western edge of North America. This process uplifted the Rocky Mountains far inland and, more recently, the Cascade and Coast Range mountains along the coast. The process continues today; the Oregon coastline continues to slowly emerge from the sea.

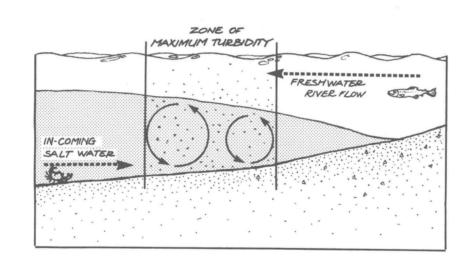
Rising Sea Level

D uring the last great ice age, much of the water from the world's oceans was locked in ice. Ten thousand years ago, sea level was far lower than today. Then, the Pacific Ocean lapped at the edge of a wide plain some ten to forty miles to the west of the present coastline. As the great glaciers melted, water returned to the oceans, and sea level rose to cover that plain, which is known today as the continental shelf. This rising ocean gnawed at the edges of the coast range mountains and flooded into the canyons of rivers leading down from the mountains. These steep canyons eventually filled with sediments, the surfaces of which are now the broad tide flats of today's estuaries.

Seasonal Rainfall

In the summer, a high pressure system typically builds over the entire Pacific northwest and pushes storm systems far to the north. Oregon receives very little rainfall. Because the coastal mountains build no snowpack in winter, have steep, small drainage basins, and have relatively thin soil cover, there is no groundwater reserve to sustain river levels during the summer drought. Coastal streams therefore dwindle. Summer freshwater input to the estuary is very low.

Summer Winds

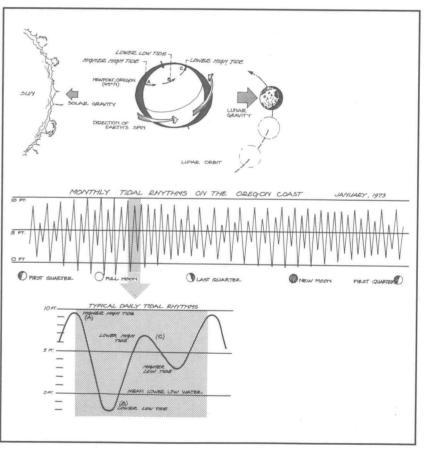

In this same high pressure system sets up strong winds which blow from the north/northwest and generate a fastmoving southward flowing ocean current near the shore. These "longshore currents" can carry great volumes of sediment and move the sand into long spits parallel to the ocean front. Sand spits divide and protect the estuarine environment from the dynamic influence of the ocean. In summer, this large volume of moving sand, coupled with low estuarine outflow, allows the sand spit to move into the mouths of estuaries and perhaps, if no jetties have been built, across the channel altogether.

Winter Storms

In winter, low pressure systems move back in over the northwest coast, bringing storms which blow onshore from the south or southwest. A strong northward flowing current, the Davidson Current, moves great quantities of sand northward along the coast. These storms drop tremendous amounts of rain onto the coastal mountains that discharge into...and through...estuaries. Combined with high tides and storm-generated high sea levels, the vigorous streamflow removes some of the sand spit built during the summer. Prior to the construction of jetties at the mouths of the rivers, high river runoff would often cause the river to breach the spit at an unpredicted location and create a new outlet to the sea. Winter also brings the highest tides flooding into the estuaries, removing plant material from even the highest marshes and distributing this organic debris throughout the estuary.

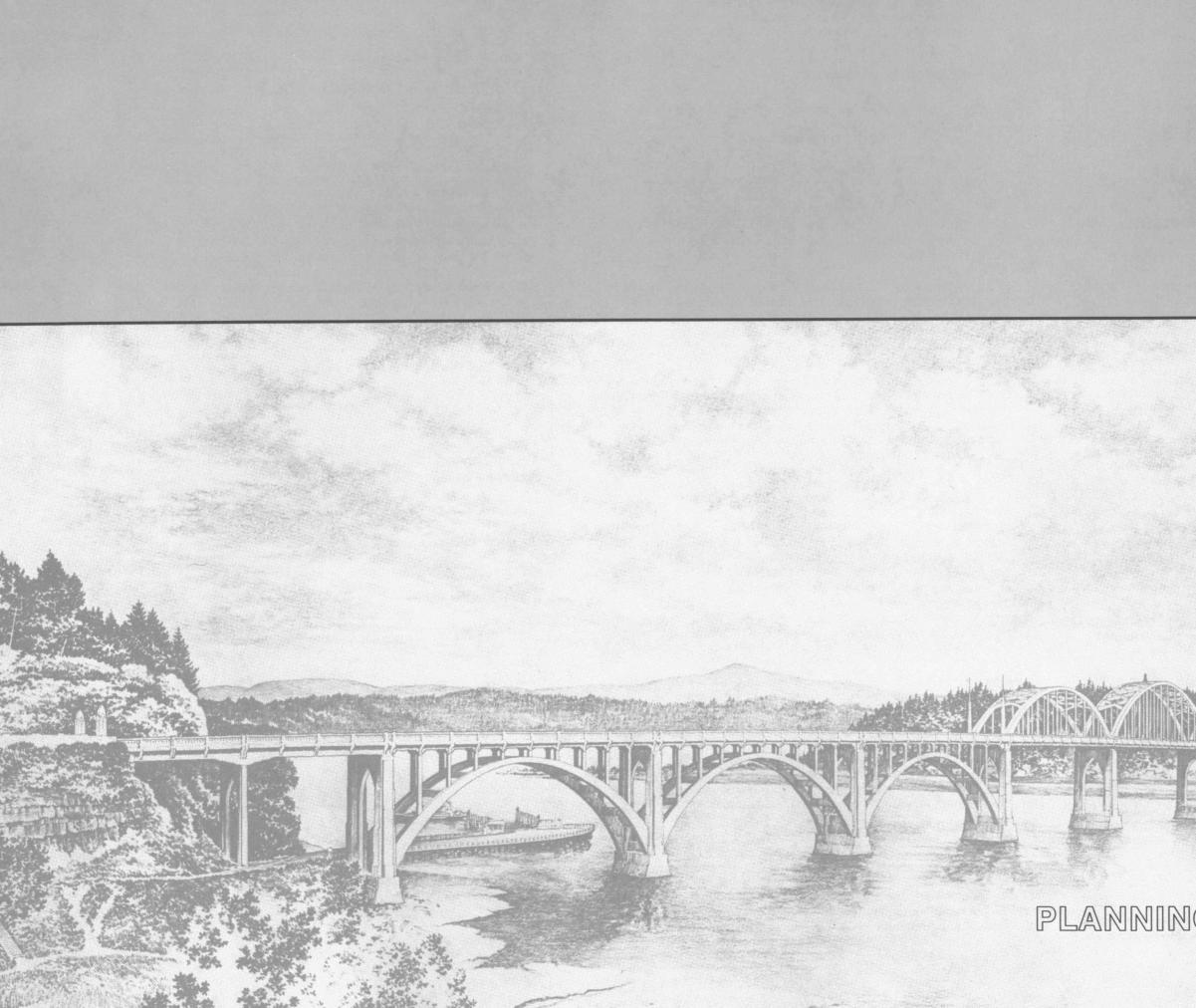
Tides

ear around, the ocean force with the greatest effect on estuaries is the daily tidal cycle. In Oregon, there is a dual high and low tide pattern with the high and low approximately six hours apart. These tides are seldom equal. On a daily basis, there is a "higher high" tide followed by a "higher low" tide, then a "lower high" tide, and finally a "lower low" tide. The elevations of these four tides vary as the moon moves through its phases. The highest tides of the year are in winter, when the Earth is closest to the sun and the moon is aligned with the sun in the "new moon" position. The lowest tides of the year come in the early summer. The pull of the sun and moon create a "tidal bulge" on the ocean which affects the Oregon coast from south to north; high tide at Coos Bay is 20 to 30 minutes earlier than it is at the Columbia River. This regular ebb and flood of the tides brings saline, nutrient-rich ocean waters into the estuary to meet the sediment-laden fresh water. This interaction drives the sedimentation process that builds the broad tide flats and creates a wide variety of saline conditions that provide a diversity of habitat for plants and animals.



Stratification

Freshwater streamflows and intruding seawater form two wedges of water going in opposite directions. The freshwater flows on top of the heavier saltwater. These wedges create surface-to-bottom differences in salinity that significantly influence life and conditions in the estuary.


This layering, known as stratification, is strongest where the two wedges meet and when river flows are high. When stratification is strong, there is little mixing between surface and bottom waters. Stratification is weakest at the sources of the wedges...the river and the ocean...and when river flow is low. Weak stratification results in greater vertical mixing.

Turbidity is highest at the upstream end of the saltwater wedge, the zone of maximum resuspension of bottom sediments.

Tidal Rhythms on the Oregon Coast

A monthly progression of high tides and low tides at Coos Bay illustrates daily and monthly fluctuations in tide heights. The Earth rotates daily beneath tidal bulges, but the tilt of the Earth's axis results in a higher high tide at (A), a lower low tide at (B), and lower high tide at (C), and a higher low tide (hidden) before returning to (A). The Moon's orbit around the Earth brings it in and out of line with the sun. (from the Oregon Ocean Book)

PLANNING REQUIREMENTS

CHAPTER TWO

The Path To Estuary Planning

O regon's land use planning program is a statewide effort to provide for needed growth and development without compromising the resources that make Oregon a special place to live. The program achieves this goal through locally adopted land use plans which decide in advance what lands will be available for needed industrial, commercial and residential development, and what lands will be protected for continued farming, forestry and other resource uses. Oregon's commitment to planning recognizes that the state can and must strike a balance between providing for growth and protecting its resources. Estuary plans are one element of this statewide program.

In the 1960's, people nationwide began to understand the extreme value and vulnerability of estuaries. The *National Estuary Study*, completed in 1969, documented the threat to estuaries and concluded that dramatic action was needed to prevent continued degradation of the nation's estuarine resources. In Oregon, concern about damage to estuaries led Governor Tom McCall to issue an executive order halting all state construction projects affecting estuaries. In 1971, the Removal-Fill Law established stringent regulations to limit dredging and filling in all waters of the state.

In the 1970's, proposals for estuary development became one of many battlegrounds between conservation and development interests. Local governments and state agencies were forced to weigh economic benefits against environmental losses. When permits for estuarine development were denied, developers argued that Oregon was a no-growth state, while environmentalists considered each new development project approval to be one more step in the irreversible loss of estuarine values. The state had no way to assure that both legitimate development needs and environmental protection would be provided for.

Impasse over specific projects led to a consensus among environmentalists and developers on the need for predictability about which areas would be developed and which would not. Environmentalists wanted a long-term commitment to estuary protection, and developers wanted to know what development was possible before they made major investments in land and development plans.

Reaching a consensus on how estuary planning should be done and agreement on what each plan should say has taken almost a decade. However, now estuary plans (and comprehensive plans) are in place which guide future decisions about where development will go. To the best of our knowledge and understanding, they provide for a level of development which provides for appropriate uses, yet still protect our estuarine ecosystems.

Land Use Planning: An Overview

Oregon's state land use law, codified as Oregon Revised Statutes (ORS) Chapter 197, authorized the Land Conservation and Development Commission (LCDC) to adopt mandatory planning procedures and standards to guide land use decisions by local governments and state agencies. These standards are the Statewide Planning Goals. Every city and county in the state is required to adopt a comprehensive plan that complies with the Goals. Once approved by LCDC, the plan takes the place of the Goals as the state's standard for most land use decisions. (State agencies are required to comply with both the Goals and acknowledged plans. In most cases, acknowledged plans fully carry out the goals, but there are several goal requirements that are not implemented through plans which must be applied by state agencies.)

There are 19 Statewide Planning Goals. Four of the Goals set planning requirements for coastal resources: estuaries, shorelands, beaches and dunes, and ocean resources. The goal requirements for estuaries and shorelands are discussed later in this chapter.

What is a comprehensive plan?

"Comprehensive plan" means a generalized, coordinated land use map and policy statement of the governing body of a local government that interrelates all functional and natural systems and activities relating to the use of lands, including, but not limited to, sewer and water systems, transportation systems, educational facilities, recreational facilities and natural resources and air and water quality management programs. "Comprehensive" means all-inclusive, both in terms of the geographic area covered and functional and natural activities and systems occurring in the area covered by the plan. "General nature" means a summary of policies and proposals in broad categories and does not necessarily indicate the specific locations of any area, activity or use." ... "Land" includes water, both surface and subsurface, and the air.

(Definition from ORS 197.015(5))

A comprehensive plan is the legal document that guides land use decisions within the area covered by the plan. Estuary management plans are one element of city and county comprehensive plans. Plans are typically divided into three parts: inventories, policies and implementing measures. Each part of the plan must be periodically updated to reflect changing needs, circumstances and information.

Inventories are the factual information about land use, resources, and development trends within the planning area; they provide the basis for plan policies. Inventories must be periodically updated to reflect the best current information about resources and trends that would affect plan decisions.

Policies are the decision-making and standard-setting parts of a plan. They are mandatory, enforceable statements which direct all subsequent land use decisions. The policy element of the plan includes plan maps which specify the location of various land use categories.

Implementing measures are the procedures and standards used to guide decisions on land use activities. They include zoning ordinances and other land use regulations which carry out plan policies. Zoning ordinances typically identify land use activities and the circumstances under which they are allowed in the various land use categories or zones. Capital improvement programs are another sort of implementing measure. They set priorities for how money is to be spent on sewers, roads and other capital improvements that shape the community.

STATEWIDE PLANNING GOALS

The Land Conservation and Development Commission (LCDC) has adopted 19 Statewide Planning Goals to guide comprehensive planning by cities and counties and land use decisions of state agencies and other units of government. The Goals deal with a wide range of topics.

	GOAL 1:	Citizen Involvem
	GOAL 2:	Land Use Planni
	GOAL 3:	Agricultural Land
	GOAL 4:	Forest Lands
	GOAL 5:	Open Spaces, S
	GOAL 6:	Air, Water and La
	GOAL 7:	Areas subject to
	GOAL 8:	Recreational Nee
	GOAL 9:	Economy of the
	GOAL 10:	Housing
	GOAL 11:	Public Facilities a
	GOAL 12:	Transportation
	GOAL 13:	Energy Conserva
	GOAL 14:	Urbanization
	GOAL 15:	Willamette River
	GOAL 16:	Estuarine Resour
	GOAL 17:	Coastal Shorelan
	GOAL 18:	Beaches and Du
	GOAL 19:	Ocean Resource
_		

- nent
- ing
- ds

Scenic, Historic and Natural Resources and Resources Quality

- Natural Disasters and Hazards
- eds
- State

and Services

ation

Greenway

- rces
- nds
- ines
- 2S

Local Land Use Decision Processes

ocal decisions on specific estuarine and shoreland activities are made in several ways. There are basically three types of land use decisions: ministerial, quasi-judicial and legislative. Public notice requirements and the detail of local review depend upon the type and intensity of the proposed activity.

Ministerial decisions involve activities which have been wholly anticipated in the plan and zoning ordinance. Such activities generally have minimal or predictable impacts that can be controlled by requiring that routine standards or conditions be met. Decisions are made by the local planning department and involve standards that can be easily measured or checked for compliance. For example, review of a building permit involves assuring that a structure is allowed by the zoning, meets setback and other zoning requirements, and that the building meets minimum requirements of the building codes. Ministerial decisions, by definition, do not require the exercise of judament by the reviewer, and as such they require neither public notice nor review by other agencies.

Quasi-judicial decisions involve the application of more general standards to a specific proposal. By definition, such decisions affect a limited, identifiable group of people. Some form of public notice and opportunity for public review, comment, and appeal is required, since some discretion is exercised by the reviewer. Most estuarine uses are subject to some form of quasi-judicial decision-making. The most common quasijudicial review is for a conditional use, which is an activity that may be permitted if it complies with certain conditions. Such conditions are generally aimed at minimizing the impacts of an activity upon surrounding resources or other human activities. Procedures for notice and hearing vary. Conditional use decisions are usually made by a city or county planning director or hearings officer. Some local governments provide notice in advance and then hold a public hearing. In other situations, particularly for non-controversial uses, the planning director prepares a written report addressing the standards in the local ordinance in advance of public notice. Notice of the planning director's proposed decision is then mailed to affected and interested parties, who usually have 10 to 30 days to either appeal or request a hearing on the proposed decision. Appeals are then considered by the planning commission or the governing body.

Legislative decisions are decisions which affect either a large area or many people. They are typically zoning ordinance or plan policy amendments; as such, the group of people affected by a decision is not readily identifiable, and thus only the publication of a general notice is required by law. Proposals for major plan amendments must be sent to LCDC. LCDC then notifies interested persons about the proposals. Zoning ordinance amendments must be consistent with the local plan, and major plan amendments must conform with the Statewide Planning Goals.

Coordination

he Oregon Land Use Act of 1973 (ORS Chapter 197) and Statewide Planning Goal 2 (Land Use Planning) require that plans be "coordinated." A plan is "coordinated" when the needs of all levels of governments, semi-public and private agencies and the citizens of Oregon have been considered and accommodated as much as possible. Coordination means that local governments must provide other units of government an opportunity to express needs and interests in the planning area as the local government prepares, implements, or amends its comprehensive plan. Coordination is especially important in estuary planning, since several local, state and federal agencies are involved in the management of estuarine resources. Local governments must evaluate needs expressed by the local port district and other agencies involved in economic development. Locally adopted plans must also implement or be consistent with state and federal requirements for the management and protection of waterways and fish and wildlife resources. After plans are adopted and approved by LCDC, the state and federal agencies must adhere to them.

Most of Oregon's estuary plans were written with the close cooperation of affected units of government. They were prepared or reviewed by an interagency task force, and they reflect a consensus between local, state and federal agencies on how estuaries will be utilized in the future.

Coordination occurs as plans are both implemented and revised. Local governments give other units of government an opportunity to comment on land use decisions. DLCD provides notice of major plan amendments to interested parties through its post-acknowledgment plan amendment notice and through notice of periodic plan review.

Coastal Cities and Ports

Twenty-two cities and thirteen port districts have planning or management responsibilities for Oregon's major estuaries. Cities, in coordination with counties, are responsible for preparing and administering estuary plans. Port districts support development and maintenance of navigation improvements for water-oriented industry and commerce, as well as commercial fishing and recreational boating and fishing. Ports also play a key role in planning and implementing economic development strategies for the areas they serve.

NEHALEM RIVER

TILLAMOOK BAY

NETARTS BAY

SAND I AKE

NESTUCCA BAY

SALMON RIVER

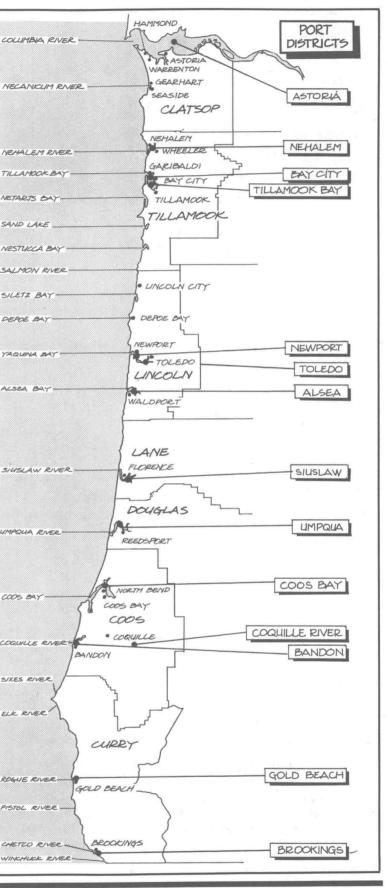
SILETZ BAY

DEME BAY

YAQUINA BAY

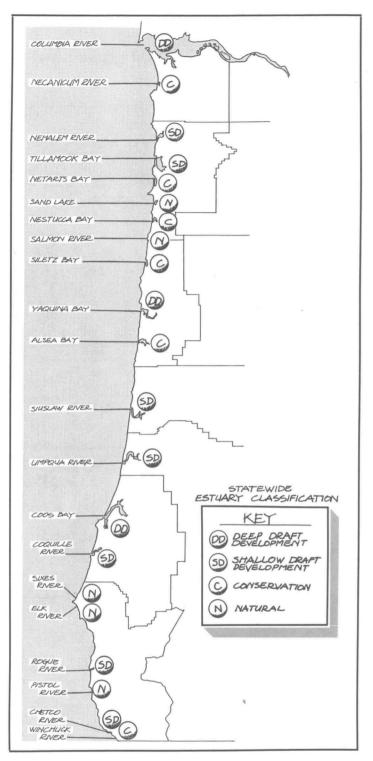
ALSEA BAY

ROGUE RIVER


COOS BAY

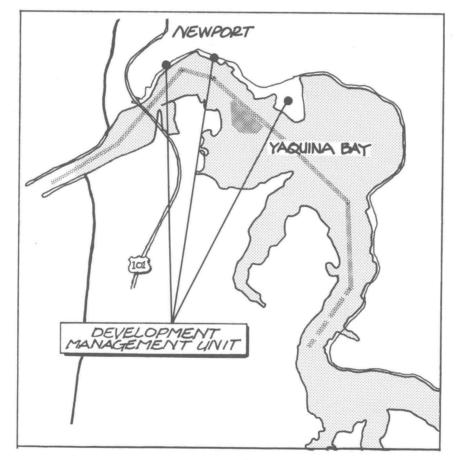
SIXES RIVER

FIE RNER


PISTOL RIVER

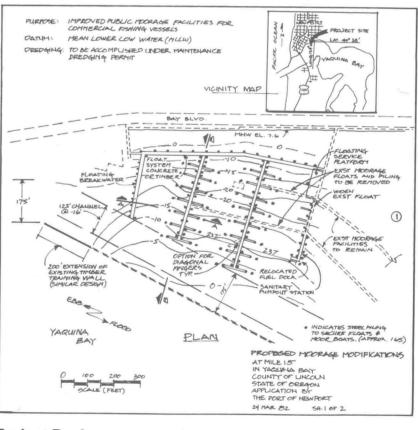
CHETCO RIVER WINCHLICK RIVER-

PLANNING REQUIREMENTS


Estuary Classification

To maintain diversity among Oregon's estuaries, Goal 16 directs the Land Conservation and Development Commission to set overall limits on the amount of development that can occur in each estuary. The classification sets an upper limit on the types and intensities of development that can occur and serves as a guide to preparation of plans for each estuary.

Estuary Planning Requirements


S tatewide Planning Goal 16 (Estuarine Resources) establishes detailed requirements for the planning and management of Oregon's estuaries. The overall objective of Goal 16 is to "recognize and protect the unique environmental, economic and social values of each estuary and associated wetlands, and to protect, maintain, where appropriate develop and restore the long-term environmental, economic, and social values, diversity and benefits of Oregon's estuaries." To accomplish this, the Goal sets broad requirements for preparation of plans and for review of individual projects. The Goal calls for coordinated action by all local, state and federal agencies that regulate or have an interest in Oregon's estuaries.

Goal 16 provides for management of estuaries in three ways. First, LCDC has established a coastwide classification system to maintain diversity between and among the state's estuaries. Second, individual estuary plans designate appropriate uses for different management units within each estuary. Third, local plans must provide for review of estuarine alterations to assure that they are as compatible as possible with the protection of estuarine values. Most Goal 16 requirements are now implemented through locally adopted plans, but some are applied by state agencies through their review of permit applications. Both state and federal agencies assist in implementing estuary plans through review of specific projects.

Management Unit Designation

Plans are prepared for each estuary by the affected cities and counties with input from the public and other interested units of government. Plans divide each estuary into a number of different zones or areas called management units. Plans identify appropriate uses for each management unit. Goal 16 directs what kinds of areas are to be included in each management unit and what kinds of uses can be allowed in each type of management unit.

Project Review

Goal 16 also requires that estuary plans include procedures and standards for review of proposed estuarine developments. Project review requirements are designed to ensure that new uses or alterations are compatible with resources in the area and that harmful effects are minimized. Most project review requirements are applied through review of permits for specific development projects.

ESTUARY CLASSIFICATION

CDC adopted an estuary classification system which defines the overall level of development permitted in each estuary (see chart at right). This system is designed to preserve diversity among Oregon's estuaries and guide development to estuaries that have been altered and which can support more development.

MAJOR ESTUARIES

CLASSIFICATION

NATURAL Sand Lake Salmon River Elk River* Sixes River* Pistol River*

CONSERVATION

Necanicum River Netarts Bay Nestucca River Siletz Bay Alsea Bay Winchuck River*

SHALLOW DRAFT

DEVELOPMENT Nehalem Bay Tillamook Bay Depoe Bav* Siuslaw River **Umpgua River** Coquille River **Rogue River** Chetco River

DEEP DRAFT DEVELOPMENT

Columbia River Yaquina Bay Coos Bay

Definition

Estuaries lacking maintained jetties or channels, and which are usually little developed for residential, commercial or industrial uses. They may have altered shorelines, provided that these altered shorelines are not adjacent to an urban area. Shorelands around natural estuaries are generally used for agriculture, forestry, recreation and other rural uses. Natural estuaries have only natural management units.

Estuaries lacking maintained jetties or channels, but which are within or adjacent to urban areas which have altered shorelines adjacent to the estuary. Conservation estuaries shall have conservation and natural management units.

Estuaries with maintained jetties and a main channel (not entrance channel) maintained by dredging at 22 feet or less. Shallow draft development estuaries have development, conservation and natural management units.

Estuaries with maintained jetties and a main channel maintained by dredging to deeper than 22 feet. Deep draft development estuaries have development, conservation and natural management units.

* Because of their small size, little study has been done of these estuaries. ODFW habitat maps are not available, so these estuaries have been excluded from this document.

MINOR ESTUARIES

The Oregon Estuary Plan Book covers Oregon's seventeen largest estuaries. Four smaller "major" estuaries and seventeen "minor" estuaries are not covered because detailed mapping and habitat information is not available for them.

Minor estuaries are formed where smaller rivers and creeks meet the ocean. Despite their small size, most minor estuaries do have valuable estuarine habitat and support anadromous fish runs. In addition, most of them are largely unaltered by human development. Minor estuaries are required to be placed in either a conservation or natural classification in an estuary plan.

County	Estuary	Classification	Size ¹
Clatsop	Ecola Creek ²	Conservation	50 acres
Tillamook	Neskowin Creek	Conservation	30 acres
Lincoln	Big Creek Beaver Creek Yachats River ³	Natural Conservation Conservation	20 acres 35 acres 40 acres
Lane	Tenmile Creek Big Creek Berry Creek Siltcoos River Sutton Creek	Natural Natural Natural Natural Natural	35 acres 35 acres 30 acres 45 acres 45 acres
Douglas	Tahkenitch Creek	Natural	25 acres
Coos	Tenmile Creek Twomile Creek Fourmile Creek/New R.	Natural Natural Natural	35 acres 20 acres 20 acres
Curry	Floras Creek/New R. Euchre Creek Hunter Creek	Natural Natural Natural	125 acres 45 acres 50 acres

¹ The figures listed are very general estimates based on local maps and head-of-tide data. ² Ecola Creek is largely within the City of Cannon Beach.

³ Yachats River estuary is largely within the City of Yachats.

PLANNING REQUIREMENTS

11

MANAGEMENT UNIT DESIGNATION

ocal plans divide each estuary into a series of management units. Each management unit is a discrete geographic area defined by biological and physical characteristics and features, within which particular uses and activities are promoted, encouraged, protected, or enhanced, and others are discouraged, restricted, or prohibited.

Goal 16 defines three types of estuary management units; natural, conservation, and development. They are described in detail below. The type of management units-and therefore the uses-allowed in an estuary depend on its classification. Natural estuaries may only include natural management units. Conservation estuaries may include both conservation and natural management units, while development estuaries may include all three types of management units.

Goal 16 requires that estuary plans list the uses permitted within each management unit. The Goal also prescribes the overall purpose of each type of management unit and limits the types of uses that are or can be allowed. The management objective provides an overall standard for planning and for review of proposed uses. Permissible uses are uses which are generally considered consistent with achieving the state management objective. Consequently, permissible uses are routinely approved, provided they meet other standards in the Goal for impact minimization. Resource capability uses may or may not be consistent with the management objective, depending on the size and location of the use and the resources affected.

Management unit boundaries are determined by the types of resources present in the estuary and the extent of past alterations. Local planners relied on published inventories and other state and federal agency studies and, when necessary, also made onsite visits to determine the precise extent of various types of habitat. Most planners based their judgements on the Oregon Department of Fish and Wildlife's estuary habitat maps. (ODFW's classification system is described in Chapter 3; habitat maps are reproduced in Chapter 5.)

Decisions about what constitutes a "major tract", "less biological significance" or "minimal biological significance" are judgments made by local governments which must be based on several factors. The major factor is the relative abundance of the particular habitat in the estuary. Existing development and past alterations were also important factors if they affect habitat quality. In either case, judgments about habitat significance were usually made with the assistance of state and federal resource agencies. Disagreements were resolved by LCDC at the time of plan acknowledgment. Changes after acknowledgment are subject to review against both the Goals and the policies in the adopted estuary plan.

NATURAL MANAGEMENT UNITS

- Areas Included: Major tracts of salt marsh, tideflats, and seagrass and algae beds.
- Management Objective: To assure the protection of significant fish and wildlife habitats, continued biological productivity in the estuary, and scientific research and educational needs. These areas are to be managed to preserve the natural resources in recognition of dynamic natural, geological and evolutionary processes.

Permissible Uses:

- Undeveloped low-intensity, water-dependent recreation; a.
- Research and educational observation;
- Navigation aids, such as beacons and buoys; C.
- Protection of habitat, nutrient, fish, wildlife and aesthetic resources; d
- Passive restoration measures: e.
- Dredging necessary for on-site maintenance of existing functional f. tidegates and associated drainage channels, and bridge crossing support structures:
- Riprap for protection of uses existing as of October 7, 1977; unique natural resources: historical and archeological values: and public facilities: and
- h. Bridge crossings.

Resource Capability Uses:

- a. Aquaculture which does not involve dredge or fill or other estuarine alteration, other than incidental dredging for harvest of benthic species or removable in-water structures such as stakes or racks:
- Communication facilities: b.
- Active restoration of fish and wildlife habitat or water quality and C. estuarine enhancement:
- Boat ramps for public use, where no dredging, fill, or navigational access is needed:
- Pipelines, cables and utility crossings, including incidental dredging e necessary for their installation:
- Installation of tidegates in existing functional dikes;
- Temporary alterations; and q.
- Bridge crossing support structures and dredging necessary for their h. installation.

CONSERVATION MANAGEMENT UNITS

- are also included in this classification.

Permissible Uses:

units (except temporary alterations).

Resource Capability Uses:

- b. Minor navigational improvements;
- eral extraction;

- Temporary alterations. q.

PLANNING REQUIREMENTS

Areas Included: Tracts of significant habitat smaller or of less biological importance than those included in natural management units, and recreational or commercial oyster and clam beds not included in natural management units. Areas that are partially altered and adjacent to existing development of moderate intensity which do not possess the resource characteristics of natural or development units

Management Objective: To provide for long-term uses of renewable resources which do not require major alterations to the estuary, except for the purpose of restoration. These areas are to be managed to conserve natural resources and benefits.

a. Permitted and "conditional" uses allowed in natural management

a. High-intensity water-dependent recreation, including boat ramps, marinas and new dredging for boat ramps and marinas:

c. Mining and mineral extraction, including dredging necessary for min-

d. Other water-dependent uses requiring occupation of water surface area by means other than dredge or fill;

e. Aquaculture requiring dredge or fill or other alteration of the estuary; f. Active restoration for purposes other than protection of habitat. nutrient, fish, wildlife and aesthetic resources; and

DEVELOPMENT MANAGEMENT UNIT REQUIREMENTS

- Areas Included: Deep-water areas adjacent or in proximity to the shoreline, navigation channels, subtidal areas for in-water disposal of dredged material, and areas of minimal biological significance needed for uses requiring alteration of the estuary.
- Management Objective: To provide for navigation and public, commercial, and industrial water-dependent uses consistent with the level of alteration allowed by the overall estuary classification.

Permissible Uses:

- Dredge or fill, as allowed elsewhere in the goal; a.
- b. Navigation and water-dependent commercial enterprises and activities:
- Water transport channels where dredging may be necessary; C.
- Flow-lane disposal of dredged material, monitored to assure that d. estuarine sedimentation is consistent with the resource capabilities and purposes of affected natural and conservation management units;
- Water storage areas where needed for products used in or resulting e. from industry, commerce, and recreation;
- Marinas: f.
- Aquaculture; q.
- Extraction of aggregate resources; and h.
- Restoration. i.

Resource Capability Uses:

- Water-related and nondependent, nonrelated uses not requiring a dredge or fill:
- b. Mining or mineral extraction; and
- c. Other uses and activities allowed in natural and conservation management units.

Designation of Development Management Units

he effect of Goal 16 is that most estuarine areas are designated as natural or conservation management units. Usually, the only areas that automatically gualify as development management units are existing developed areas and authorized navigation channels. In order to designate new areas for development, plans must provide additional justification through a "goal exception." A goal exception is required whenever a use is proposed that is not permitted by the applicable Statewide Planning Goal.

Exceptions are required in order to allow development in areas that gualify as natural or conservation management units, because Goal 16 does not permit major alterations or intense development in such areas. The standards for preparation and approval of goal exceptions have been carefully refined through court cases, statutory amendments, and administrative rules.⁴ To justify a goal exception, facts and reasons must be set forth which meet the following four tests:

- 1. Reasons justify why the state policy embodied in the applicable Goals should not apply:
- 2. Areas which do not require a new exception cannot reasonably accommodate the use;
- 3. The long-term environmental, economic, social and energy consequences resulting from the use at the proposed site with measures designed to reduce adverse impacts are not significantly more adverse than would typically result from the same proposal being located in areas requiring a goal exception other than the proposed site; and
- 4. The proposed uses are compatible with other adjacent uses or will be so rendered through measures designed to reduce adverse impacts.

LCDC has adopted an administrative rule (OAR 660-04-022(5)) which sets forth reasons that can be used to justify exceptions to Goal 16's requirements for natural and conservation units to designate new areas for water-dependent development:

⁴ The requirements for goal exceptions are set forth in OAR 660-04. Reasons which can justify goal exceptions are set forth in OAR 660-04-022.

To allow water-dependent industrial, commercial, or recreational uses in development and conservation estuaries which require an exception, an economic analysis must show that there is a reasonable probability that the proposed use will locate in the planning area during the planning period, considering the following:

- use:

To meet the exceptions requirements, local governments prepared detailed analyses of their economies to assess the need for water-dependent uses. Most relied on statewide and national economic forecasts of demand for various types of port facilities, and then assessed the likelihood that such facilities would locate in their areas. Based on these analyses, local governments identified specific sites with potential for future development.

Exceptions are adopted as part of the comprehensive plan. Exceptions included in acknowledged plans received detailed review by resource agencies and LCDC to assure that they were properly justified. After acknowledgment, new goal exceptions must be reviewed and approved through the plan amendment notice and review process or at the time of periodic review.

a. Factors of Goal 9 [Economy of the State] or, for recreational uses. the factors of Goal 8 [Recreational Needs];

b. The generally predicted level of market demand for the proposed

c. The siting and operational requirements of the proposed use including land needs, and as applicable, moorage, water frontage, draft or similar requirements; and

d. Whether the site and surrounding area are able to provide for the siting and operational requirements of the proposed use;

e. The economic analysis must be based on the Goal 9 element of the county comprehensive plan and consider and respond to all economic information available or supplied to the jurisdiction. The scope of this analysis will depend on the type of use proposed. the regional extent of the market and the ability of other areas to provide for the proposed use.

PLANNING REQUIREMENTS

PROJECT REVIEW

n addition to planning requirements. Goal 16 sets a number of I requirements that apply to review of specific development projects. These tests are designed to assure that proposed uses are compatible with other uses of the estuary, and that possible harmful effects are kept to a minimum. Up to four different requirements affect how local governments and state agencies review specific proposals for estuarine development. These include the resource capabilities test; the dredge, fill and other alterations test; the impact assessment requirement; and the mitigation requirement.

Most of these requirements are applied by local governments through review of permits for specific projects. However, some plans have addressed project review requirements in the comprehensive plan. In a few cases, plans have deferred these requirements to resource agencies to apply through agency permit reviews. It is necessary to review each local plan to determine how these requirements are implemented.

THE RESOURCE CAPABILITIES TEST

he management unit charts on the previous page list uses as either "permissible uses" or "resource capability uses." Permissible uses are considered to be consistent with the purposes of the management unit and are, therefore, only subject to the dredge/fill test. Uses listed as resource capability uses, however, may or may not be "consistent with the resource capabilities of the area and the purposes of the management unit."

Through the resource capabilities test, local governments consider the effects of each conditional use on other uses, the resources in the area. and the management objective for the unit. Based on these considerations, a conditional use will either be allowed, not allowed, or limited in such a way that it is consistent with the uses, resources, and management objectives for the area. The resource capabilities test can be applied either during plan development or through the review of a particular project.

Whether or not a use is consistent with these values and objectives will depend on a site's ability to tolerate a particular type or level of use, considering:

- the resources present at the site;
- other uses in the area: and
- the size, scale or location of the proposed use.

Local governments weigh these factors to determine the appropriateness of a proposed use. A use or activity is considered appropriate when:

Either the impacts of the use on estuarine species, habitats, biological productivity and water quality are not significant or the resources of the area are able to assimilate the use and activity and their effects, and continue to function in a manner which protects or conserves⁵ important natural resource values or uses.

Important natural resource values in natural management units are significant wildlife habitats, natural biological productivity, and values for scientific research and education. Important resource values and uses in conservation management units are renewable resources, natural biological productivity, recreational and aesthetic values, and aquaculture.

Resource Agency Review

Resource agencies play an important role in making resource capability decisions. The test requires local governments to gather information about the impacts of proposed uses - information that is often available from state and federal resource agencies. The test also requires that a judgment be made about whether or not the use is appropriate. Such judgments also involve the expertise of resource agency personnel.

In several cases, local plans defer resource capability decisions to state agencies. For example, Tillamook County leaves decisions on the appropriateness of oyster culture operations to the Department of Fish and Wildlife; the appropriateness of log storage in Coos Bay is decided by the Department of Environmental Quality; and Douglas County leaves the review of dredge and fill activities in the Umpgua River to the Division of State Lands.

An Example of a Resource Capabilities Test

Consider a marina development proposed in a conservation management unit. Marinas are allowed in conservation management units if they have only insignificant impacts or where they are, in essence, compatible with other values and uses in the management unit.

Expansion of an existing marina in an area with minimal resource values by the addition of a few floats and pilings, and which involves no dredging, would probably be considered to have insignificant impacts. A proposal for a new, large marina which involves dredging, or which would impact existing uses or values, must be evaluated to determine whether or not it fits the resource values and uses in the area. If the proposed marina would interfere with an existing use or resource value, it would probably be inconsistent with the resource capabilities of the area. The local government might also determine that by reducing its size or changing its location or configuration, the marina could be made compatible with adjoining uses. If this is the case, the marina could be approved with appropriate limiting conditions.

DREDGE, FILL AND OTHER ALTERATIONS TEST

stuaries are sensitive ecosystems. Even slight changes such as the placement of a few cubic yards of fill, or a small amount of dredging, can destroy habitat or damage a population. Because estuarine resources are so sensitive, the goal requires careful review of any proposed dredging, filling or other alteration to assure that the activity is needed and that harmful effects are kept to a minimum. The goal sets strict tests for allowing dredging or filling in the estuary. Dredging or filling is only allowed:

- trust rights:
- d. If adverse impacts are minimized.

Other activities which could affect the estuary's physical processes or biological resources are also subject to review. These "other alterations" include but are not limited to: inwater structures, riprap, log storage, application of pesticides and herbicides, water intake or withdrawal. wastewater discharge, and flow-lane disposal of dredged material. Other alterations which do not involve dredge or fill are allowed if the requirements in b, c and d are met.

These requirements may be applied at the time of plan development for activities that are identified in and anticipated by the plan. Otherwise, they must be addressed at the time of permit review.

a. If required for navigation or other water-dependent uses that require an estuarine location, or if specifically allowed by the applicable management unit requirements of Goal 16;

b. If a need (i.e., a substantial public benefit) is demonstrated and the use or alteration does not unreasonably interfere with public

c. If no feasible alternative upland locations exist; and

⁵ Activities in natural management units must preserve resource values. Activities in conservation management units are required to conserve the same values. Protect is defined as: "to save or shield from loss, destruction or injury or for future intended use." Conserve is defined as: "to manage in a manner which avoids wasteful or destructive uses and which provides for future availability.

IMPACT ASSESSMENT

he resource capabilities test and the dredge/fill and other alterations test require that information about estuarine impacts be gathered and analyzed to support individual decisions. An impact assessment is the mechanism for gathering and presenting such information.

An impact assessment must be prepared for any activity which would potentially alter the estuarine ecosystem. Such activities include dredging, fill, in-water structures, riprap, log storage, application of pesticides and herbicides, water intake or withdrawal, wastewater discharge, flowlane disposal of dredged material, and any other activity which could affect the estuary's physical processes or biological resources.

Impact assessments must include information on the following:

- a. The type and extent of alterations expected;
- b. The type of resource(s) affected;
- c. The expected extent of impacts of the proposed alteration on water quality and other physical characteristics of the estuary, living resources, recreation and aesthetic use, navigation and other existing and potential uses of the estuary; and
- d. The methods which could be employed to avoid or minimize adverse impacts.

The detail of impact assessments varies depending upon the nature of the proposed activity and the resources that are affected. Larger projects that involve extensive dredging or filling and that are proposed for sensitive areas will require more detailed reports than projects which involve only minor alterations. An assessment is adequate if it enables reviewers to gain a clear understanding of the impacts to be expected. An assessment need not be lengthy or complex so long as this standard is met. Impact assessments are generally prepared when a permit is requested, unless one has been made in the plan.

MITIGATION

he effects of development projects which involve fill or dredging in intertidal areas must be offset by the creation, restoration or enhancement of another part of the estuary. By replacing lost values, mitigation ensures that the integrity of the estuarine ecosystem is maintained. This requirement is also contained in the Removal-Fill Law implemented through administrative rules adopted by the Division of State Lands (DSL) (OAR 141-85-240). DSL decides how much mitigation is required for individual projects through its review of removal-fill permits.

Mitigation is not considered a reason or justification for allowing estuarine dredging or filling. Instead, the mitigation requirement is applied after a project meets the criteria for granting permits specified in the Removal-Fill Law. This includes a requirement that impacts of proposed fill or dredging must be minimized.

Goal 16 requires that plans designate and protect appropriate sites to mitigate or restore estuarine values that have been lost or damaged by past development. The number and type of sites designated in each estuary varies. Where it is possible to do so, plans must designate and protect sites which generally correspond to the type and size of intertidal areas proposed for dredging or filling.

OTHER STATE AND FEDERAL REGULATIONS

number of state and federal laws regulate how estuaries may be $L = \Delta$ used. Most of these laws require that a permit be obtained for any activity which would alter the estuary. Estuary plans provide a framework for permit decisions.

The state of Oregon's authority to regulate estuarine alterations is based on the state's ownership of the beds and banks of most waters in the state and the state's public trust responsibility to manage public resources-including water, fish and wildlife-in the public interest. Federal laws are based on the national government's general mandate to protect public health and welfare and its specific authority over all navigable waters. The authorities delegated to various state and federal agencies are outlined below.

Division of State Lands (DSL)

DSL administers the state's ownership interest in beds and banks of estuaries and issues permits for dredging and filling under the Removal-Fill Law. The Removal-Fill Law sets strict standards for resource protection and requires that DSL solicit comments from a variety of agencies and the public to assure that all public concerns are fully considered. DSL also administers the requirement for mitigation of dredge or fill in intertidal areas.

Department of Fish and Wildlife (ODFW)

ODFW manages fish and wildlife populations in the state and directly regulates fishing and hunting. Since protection of habitat is also critical to management, ODFW advises other agencies and local governments on proper measures to protect and enhance habitat. ODFW biologists and researchers play a critical role in advising DSL and other agencies considering actions which would affect an estuary. ODFW also regulates private fish hatcheries, and is responsible for state-operated fish hatcheries.

Department of Environmental Quality (DEQ)

The Department of Environmental Quality (DEQ) is responsible for maintaining water quality in state waters. DEQ regulates most activities which would affect water quality, including construction of new sewage treatment plants. DEQ is also responsible for regulating nonpoint source pollution (such as agricultural runoff) and hazardous waste disposal.

Other State Agencies

The Department of Agriculture issues and monitors leases for oyster rearing and other in-water aquaculture operations. The State Health Division monitors estuarine water quality to assure that oysters are safe to eat.

The Corps is responsible for building and maintaining the jetties and ship channels in most development estuaries. The Corps also administers federal laws which require permits for estuarine alterations. These include Section 10 of the Rivers and Harbors Act, which gives the Corps jurisdiction over all navigable waters, and Section 404 of the Clean Water Act, which extends this jurisdiction to all waters of the United States. (This adds tributary streams and wetlands to Corps jurisdiction.) These laws set up standards and procedures similar to those in the Removal-Fill Law for protecting estuarine resources. The Corps is required to consult other agencies and the public before issuing permits.

U.S. Fish and Wildlife Service (USFWS)

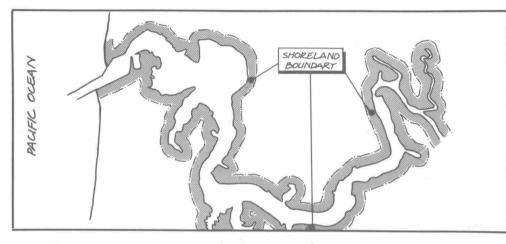
USFWS is ODFW's federal counterpart. Under the Fish and Wildlife Coordination Act. USFWS has principal responsibility for advising the Corps. about the effects of proposed permits on fish and wildlife. USFWS also advises the Corps on ways that harmful effects of proposed development projects can be avoided or mitigated.

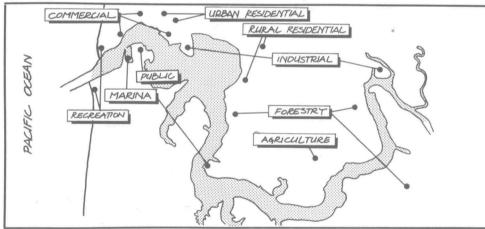
National Marine Fisheries Service (NMFS)

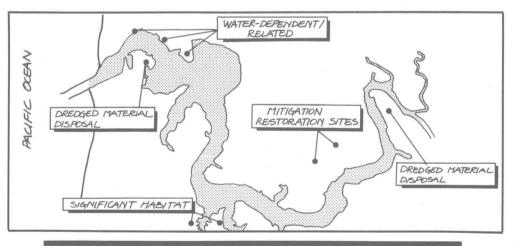
NMFS is responsible for management of ocean fisheries and anadromous fish, such as salmon and steelhead. Since many marine fish are dependent on estuaries at some point in their life cycle. NMFS also advises the Corps about potential impacts of estuarine alterations.

Other Federal Agencies

The Environmental Protection Agency (EPA) is responsible for implementation of the Clean Water Act and shares its authority under Section 404 with the Corps. EPA has other general authority for water guality maintenance similar to DEQ. The Coast Guard regulates construction of bridges and other structures that might interfere with navigation.


US Army Corps of Engineers (Corps)


PLANNING REQUIREMENTS


SHORELAND PLANNING REQUIREMENTS

ands bordering estuaries support a variety of uses which are important for both estuarine protection and development. Shorelands provide special habitat areas for wildlife and buffer the estuary from upland land uses. At the same time, proximity to the estuary is essential to some types of development and attractive to most others. As a result, shorelands are ecologically important and sensitive areas, yet subject to extreme development pressures.

Goal 17 (Coastal Shorelands) sets out planning and management requirements for lands bordering estuaries, as well as lands bordering coastal lakes and the ocean shore. Shorelands are also covered by the other Statewide Planning Goals. As a result, a wide variety of planning requirements apply to estuary shorelands.

Shorelands Boundary

The first step in applying Goal 17's requirements is defining the area that is considered "coastal shorelands." The landward limit of the coastal shorelands boundary is set by inventorying lands within 1000 feet of the estuary shoreline. Resources important to the estuary within this "planning area" must be included within the coastal shorelands boundary.

Shoreland Uses

Coastal shorelands support a wide variety of uses. Since Goal 17 works in combination with other Statewide Planning Goals, an equally wide variety of plan and zone designations regulate uses in coastal shoreland areas. These cover the full range of uses, from urban and rural uses to natural area preservation.

Special Shoreland Sites

A few shoreland sites have special values which require additional protection above and beyond regular plan and zone designations. These include special zoning for sites which are needed for economic development, like sites for water-dependent development, as well as areas needed for estuarine protection and enhancement, like significant habitat and mitigation sites. Plans must identify and provide special protection for these sites.

COASTAL SHORELANDS BOUNDARY

oal 17 requires that cities and counties establish a "coastal shoreland boundary" on lands bordering coastal waters, including estuaries. Lands within the boundary are to be planned and managed to recognize their relationship with, and importance to, coastal waters. The coastal shorelands boundary around estuaries must be a minimum of fifty feet upland of the estuary shoreline. The shoreline, or the upper limit of the estuary, is either the line of nonaquatic vegetation or mean higher high water, whichever is higher. The boundary must extend upland to include the following areas and resources:

- Areas subject to ocean flooding:
- Areas of geologic instability;
- Riparian vegetation;

The shorelands boundaries shown in the Estuary Plan Book reflect the boundaries in acknowledged comprehensive plans. In 1984, LCDC amended Goal 17 to allow cities and counties to narrow the shorelands boundary to exclude lands subject to estuary or riverine flooding. The effect of this amendment will be to exclude some floodplain areas, mostly agricultural lands, from the shorelands boundary. Cities and counties will be revising the shorelands boundaries at the time of periodic plan review.

· Significant shoreland and wetland biological habitats;

 Areas needed for water-dependent and water-related uses, including dredged material disposal and mitigation sites; and

Areas of exceptional aesthetic or scenic guality.

COASTAL SHORELAND USES

Il kinds of land uses occur on estuarine shorelands. Consequently, Lind shorelands are covered by virtually every different kind of plan and zone designation used by coastal cities and counties. Although Goal 17 sets additional requirements for coastal shorelands, it is important to understand the limitations established by requirements of other Statewide Planning Goals which also apply within the shorelands boundary.

It is important to note that the zoning districts vary from jurisdiction to jurisdiction. The list of permitted and conditional uses presented here is generally representative of the uses typically permitted by plans and the applicable Statewide Planning Goals. Individual city and county comprehensive plans should be consulted to determine the actual list of permitted and conditional uses for each local zoning district.

The one to three letter symbols in parentheses (e.g., FU, F, RR, etc.) correspond to a generic zoning classification that is used to provide coastwide comparisons in Chapter Four. The classification matrix itself is included in the Appendix.

MIXED AGRICULTURAL AND FOREST LANDS (FF) Tracts of land that meet the criteria listed above for agricultural or forest land but are presently in smaller ownerships.

Minimum Lot Size: Usually 20 acres.

Permitted Uses:

Same or similar to uses listed as permitted in agricultural and forest lands.

Permitted Uses:

Same or similar to uses listed as permitted in agricultural and forest lands.

Uses Subject to Review:

Same or similar to uses listed as subject to review in agricultural and forest lands

Uses Subject to Review:

Same or similar to uses listed as subject to review in agricultural and forest lands

AGRICULTURAL LANDS (FU) Includes lands within SCS soil Classes I-IV and other lands used for farming or necessary for farm operations.

Minimum Lot Size: 40 acres is the most common minimum lot size used by coastal counties. In some situations, counties have applied larger or smaller minimum lot sizes to fit the pattern of agriculture in a particular area of the county. Counties may choose to specify no minimum lot size, but rather review proposed partitions on the basis that the resulting parcels will support commercial farm use.

Permitted Uses:

- 1. Farm use:
- 2. Propagation or harvest of forest products; and
- 3. Nonresidential buildings customarily provided in conjunction with farm use.

Uses Subject to Review:

- 1. Boarding horses for profit;
- 2. TV, radio and microwave transmission towers:
- 3. Utility facilities;
- 4. Exploration, mining, and processing of aggregate and other mineral or subsurface resources:
- 5. Personal use airports;
- 6. Home occupations;
- 7. Primary processing of forest products:
- 8. Aquaculture;
- 9. Private hunting and fishing preserves:
- 10. Schools:
- 11. Churches:
- 12. Golf courses;
- 13. Nonprofit government centers;
- 14. Nonfarm dwellings; and
- 15. Campgrounds.

use.

Permitted Uses:

- - 2. Farm use;
- the Forest Practices Act:
 - 4. Uses accessory to commercial forest uses, including equipment storage and maintenance facilities, log sorting vards, mining for forest operations, helipads, impoundments for firefighting, and logging roads;
 - 5. Temporary, portable facilities for the primary processing of forest products:

 - operations.

FOREST LANDS (F): Includes existing and potential forest lands that are suitable for commercial forest uses, and other forested lands needed for watershed protection, wildlife and fisheries habitat, and recreation. (Lands suitable for commercial forest uses include all lands capable of growing 50 cubic feet or more per acre per year.)

Minimum Lot Size: 40 acres is the typical minimum lot size. A number of counties have 80 acre minimum lot sizes. The Goal also allows counties to choose not to specify a minimum lot size, in which case they review requests for divisions on a case-by-case basis to determine whether or not the lot size is sufficient to support commercial forest

1. Commercial growing and harvesting of forest tree species;

3. Other activities regulated by

- 6. Exploration for geothermal, gas, and oil resources; and
- 7. Mining for commercial farm

Uses Subject to Review:

- 1. Primary processing of forest products (limited to 10 acres in size):
- 2. Communication facilities and transmission towers:
- 3. Low level power distribution lines with rights-of-way 50 feet or less in width:
- 4. Small-scale reservoirs (limited to 10 acres in size);
- 5. Aquaculture:
- 6. Campgrounds;
- 7. Aids to navigation:
- 8. Logging equipment, repair and storage;
- 9. Log scaling and weigh stations:
- 10. Mining and processing of geothermal, gas, and oil resources:
- 11. Exploration, mining, and processing of aggregate and mineral resources:
- 12. Solid waste disposal sites (limited to 10 acres in size);
- 13. Commercial generation facilities (limited to 10 acres in size):
- 14. Temporary asphalt and concrete batch plants as accessory uses of highway projects;
- 15. Division of forest land for the purpose of creating a life estate where a preexisting dwelling is involved; and
- 16. Home occupations pursuant to ORS 215,448.

- RURAL RESIDENTIAL LANDS (RR): Lands outside of urban growth boundaries that are either physically developed with homes or are committed to nonresource use by the surrounding pattern of nonresource related development (i.e., the pattern of existing development (homes, sewer, water, roads) makes it impractical to manage the land for farm or forest use).
- Minimum Lot Size: Typically one, two, or five acres. Minimum lot sizes usually reflect the existing pattern of development in the area and the extent of available public facilities, especially public sewer and water systems. Areas with five acre minimum lot sizes typically provide their own water and have onsite sewage disposal systems, though some areas are served by community water systems. Lands developed and zoned for development between one and five acres typically are served by community water systems. Areas developed and zoned for one acre lots typically are served by both community sewer and water systems.

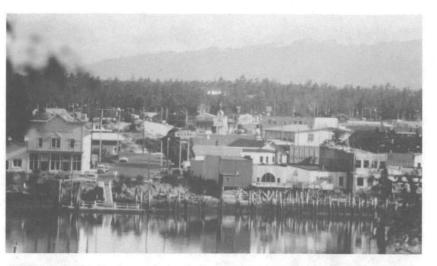
Permitted Uses:

4. Forest use: and

1. Single family dwelling:

2. Home occupation;

3. Farm use:


- 1. Other uses allowed in farm or forest zones:
- 2. Fire stations; and
 - 3. Bed and breakfast

Uses Subject to Review:

- 5. Public or private open space.
- URBAN RESIDENTIAL (UR): Lands within UGB's that are presently developed at or designated for higher density residential development.

Minimum Lot Sizes: Typically range from 5,000 to 20,000 square feet.

Typical Use Provisions: Most cities have two to four different residential zones to provide for different densities and types of housing. These typically include an R-1 zone, which provides for single family dwellings on larger lots (10,000 square feet or more); an R-2 zone, which allows duplexes or manufactured housing, and which may have a smaller minimum lot size (typically 7,500 square feet); and an R-3 zone, which allows apartment buildings and/or mobile homes. An R-4 zone would usually allow higher density multifamily housing and some commercial uses such as motels or convenience stores.

- COMMERCIAL (C): Commercially-zoned lands are typically located near high surface traffic areas with residential areas nearby. Minimum lot sizes vary according to the size of population being served. Cities usually have two or three zones to provide for different types of commercial uses.
- Minimum Lot Sizes: Minimum lot sizes vary from zone to zone and jurisdiction to jurisdiction.

- INDUSTRIAL (I): Industrially-zoned lands are usually located near sources of raw materials, power or transportation facilities, or established markets.
- Minimum Lot Size: Most local governments do not specify minimum lot sizes in industrial zones.
- Typical Use Provisions: Smaller cities generally have one industrial zone designation which allows a wide range of industrial uses. Larger cities have two or three industrial zones. Light Industrial zones typically allow industrial uses that do not cause off-site effects like noise. dust, vibration or smoke. Some commercial uses like warehousing are often allowed in Light Industrial zones. General Industrial zones allow all but the most intense industrial uses, such as large log, lumber, and pulp mills, which are allowed in Heavy Industrial zones.

PUBLIC FACILITIES (PUB): Publicly-owned lands or facilities except for state and federal forest lands. This includes sewer and water treatment facilities, schools, and may also include state parks.

Typical Use Provisions: Public land and public facility zones generally only allow for the establishment or expansion of the types of public facilities described above. The State Parks and Recreation Division has developed State Park Master plans which detail the permitted uses of land within individual parks.

SPECIAL SHORELAND SITES

Ithough all shorelands are important, a few shoreland sites are approximity to the estuary or because they play a critical role in protection and proper development of estuarine resources. These include sites for estuarine mitigation and restoration, sites for disposal of dredged material, sites for waterdependent development, significant habitats, and riparian vegetation. Goal 17 recognizes the importance of these areas through additional requirements for protection of shoreland sites with special values.

Protecting Special Shoreland Sites

D) rotection of special shoreland sites is accomplished in a variety of ways, including special zoning districts, overlay zones, and supplementary requirements. Each of these zoning techniques either limit or prohibit uses which would prevent or interfere with use of the site for its intended purpose.

Special zoning districts are regular zones designed to provide for a particular type of use, like water-dependent industrial development. Permitted and conditional uses are listed in the zone, along with procedures and standards for approval of development.

A second approach is the use of an overlay zone. An overlay zone is a special zone that is applied 'over', or in addition to, a base zone. An overlay zone usually places additional restrictions on uses that are otherwise permitted by the underlying or parent zone. This technique is typically used to protect DMD and mitigation sites.

A third protection technique is the adoption of supplementary regulations. Supplementary regulations are special standards in a regular zoning district which apply only to certain resources or areas within the district. The standards usually include either a definition of the resource to be protected or a reference to a map or inventory of the protected resource. Supplementary regulations are used when a resource occurs in a variety of different zoning districts and the jurisdiction chooses not to use an overlay zone. For example, riparian vegetation is usually protected through supplementary regulations in most zoning ordinances.

Minimum Lot Size: There are typically no lot size requirements.

DREDGED MATERIAL DISPOSAL

istorically, dumping of material dredged from navigation channels and harbors has been a major source of damage to estuarine resources. Estuary plans will avoid or minimize further losses by identifying appropriate locations and techniques for disposing of dredged material.

Plans for each estuary where dredging is proposed include a dredged material disposal (DMD) plan. The DMD plan includes several components:

- 1. An estimate of the amount and location of dredging likely to occur over the next 20 years. This estimate is based on the development designations approved in the plan and needs for channel maintenance or deepening in approved navigation channels.
- 2. An analysis of potential sites and techniques for disposal of dredged material. The particular types of sites and methods for dredged material disposal vary, depending upon the physical setting of the estuary, the availability and cost of upland disposal sites, and the amount of material that needs to be dredged and disposed of.
- 3. Designation and protection of sufficient appropriate sites for future use for dredged material disposal.

Estuary plans contain a variety of approaches to protect designated dredged material disposal (DMD) sites. Despite differences, most protection measures preclude land uses on the site that would prevent its use for dredged material disposal. Temporary uses and other uses which do not involve extensive improvements, such as parking, storage, or farming, are allowed. Uses which would involve more extensive capital improvements or the extension of utilities are restricted or prohibited. Protective zones typically contain provisions which remove protective zoning once the site has been fully used for disposal. Some plans and ordinances allow protective zoning to be removed if the site is replaced by an equally suitable site.

Some jurisdictions have inventoried DMD sites that do not merit the same protection as priority sites. Called "Reserve" or "Inventory" sites, they are generally not restricted as to permitted uses. Protection for these secondary DMD sites usually only involves special notice and review requirements for proposed land uses. Such provisions delay approval for up to 60 to 90 days to allow interested parties or agencies to negotiate for use of the site for dredge spoils before the land use is officially approved.

Uplands - These are shoreland sites that are either vacant or have only minimal development. Often marginal agricultural lands are designated for dredged material disposal. In non-agricultural areas, dredged material disposal can serve to make a site more developable. In EFU-zoned areas, DMD plans typically require that the area be restored to agricultural use once disposal is complete.

Development Sites — Dredged material is often used as a source of fill material for approved projects in development management units. It is difficult to estimate the capacity of such sites because the amount of fill allowed will usually be determined in the permit process, when the details of the particular project are known.

Types of Dredged Material Disposal Sites

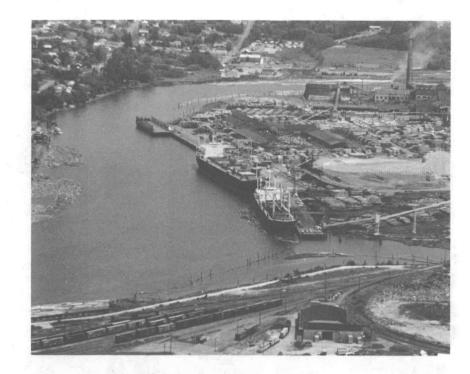
Flow-lane disposal - Flow-lane disposal involves the dumping of dredged material back into the estuary to allow river currents and tidal action to push the added material out of the estuary. Designation of flow-lane sites requires careful study of estuarine hydraulics to assure that dumped material is adequately flushed out of the estuary and does not pile up and smother productive subtidal or intertidal areas.

Ocean Disposal - Ocean disposal of dredged material is regulated by the Environmental Protection Agency (EPA). EPA-approved sites are designated outside a number of the state's important ports, including the Columbia River, Tillamook Bay, Depoe Bay, Yaquina Bay, and Coos Bay. Ocean disposal involves transporting material offshore on a barge or in a hopper dredge to be dumped in open ocean waters.

PLANNING REQUIREMENTS

MITIGATION AND RESTORATION SITES

()) ne of the major objectives of estuary planning is to identify ways to repair the damage done to estuaries by past alterations. Mitigation and restoration planning identify shoreland sites that can be added to the estuary to increase estuarine values or offset effects of new development. The number and type of mitigation sites designated in plans must generally correspond to areas designated for development in the plan which would require mitigation.

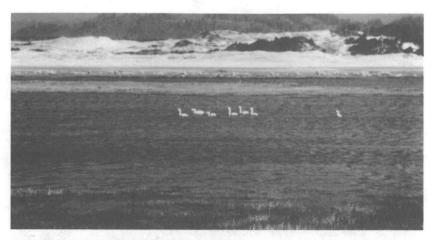

Mitigation and restoration involve the same types of activities but are done for slightly different reasons. Both involve actions which either restore an area to the estuary, create a new estuarine area, or enhance an existing estuarine area. However, mitigation is done to compensate for damage done by new development, while restoration is done to offset historical losses and reestablish past values.

Mitigation is required whenever intertidal dredge or fill is permitted. The type and amount of mitigation generally must replace the habitats and values lost at the development site. There is no specific Goal requirement to carry out restoration. Consequently, restoration projects are usually undertaken by resource or land management agencies to provide for overall enhancement of estuarine values. Several restoration projects have been undertaken in the Salmon River Estuary by the US Forest Service.

It is important to note that the term "mitigation" has different meanings under state and federal law. In Oregon, mitigation only includes compensating for unavoidable losses through habitat creation, restoration, or enhancement. Federal agencies define mitigation much more broadly. They consider any method of reducing impacts of a proposed development project to be mitigation. Mitigation measures under federal law include redesign or relocation, as well as "compensation" for unavoidable habitat losses through creation or restoration of new areas. In terms of the federal definition of mitigation, Oregon's mitigation requirement is considered a compensation requirement.

Types of Action	Definition	Typical Action
Creation	Addition of a new area to the estuary.	Scalping of a shoreland down to tidal elevation to create a marsh or tidal flat.
Restoration	Returning an area to estu- ary that was formerly part of the estuary.	Removing or breaching a dike to allow tidal action to return: usually to create a marsh.
Enhancement	Improving the quality of an area that is currently part of the estuary.	Widening or replacing a culvert to increase flush- ing to improve water qual- ity.

Mitigation and Restoration Actions



WATER-DEPENDENT DEVELOPMENT SITES

major purpose of estuary planning is to provide appropriate loca- $L \rightarrow \Delta$ tions for new development. This is especially true for certain uses, like marinas and boat building and shipping facilities, that are considered water-dependent because they require access to the water in order to function. In the past, new lands for development have been created by dredging and filling productive estuarine areas. Goal 17 seeks to minimize the need for additional dredging and filling by making sure that suitable shorelands are reserved for water-dependent uses.

Goal 17 requires estuary plans to identify and protect shoreland sites that are especially suited for water-dependent uses (ESWD). To qualify as ESWD, a site must have deep water close to shore-to minimize need for dredging-and have adequate upland and supporting transportation connections to support expected uses. Most local zoning ordinances contain at least one zone designed to accommodate water-dependent uses. Although most ESWD zones contain a list of uses that qualify as water-dependent, many local governments choose to determine waterdependency on a case-by-case basis through a conditional use review. Through the conditional use process, the local government can examine the nature of a particular operation and determine whether or not it is water-dependent.

Water-related and non-dependent, non-related uses can be permitted in ESWD zones, if they are in conjunction with and incidental to a waterdependent use, or if they do not preclude subsequent use of the site for water-dependent development. Generally, to be in conjunction with and incidental to a water-dependent use, a non-water-dependent use must be constructed at the same time or after the water-dependent use, and be carried out together with the water-dependent use. Incidental means the non-water-dependent use is small in relation to the water-dependent operation, and does not interfere with the water-dependent use. Examples of uses which are in conjunction with and incidental to a waterdependent use include a restaurant on the second floor of seafood processing plant, or a retail sales room as part of a seafood processing plant.

SIGNIFICANT SHORELAND HABITATS

ignificant shoreland habitats are areas which are especially impor- (\mathcal{G}) tant because of their proximity to the estuary. For example, bald eagles which feed in the estuary often depend on large trees and snags in nearby shorelands for perches and nesting sites.

This category of shoreland resources also includes "major marshes". These are wetlands which are close to the estuary but are not subject to tidal influence. Not all habitat or marshes within the shoreland boundary are significant or major. To qualify as "major" or "significant" a marsh or habitat must be large relative to other similar areas around the estuary, or possess some unique or special value which merits added special protection. For example, habitats of threatened or endangered species typically gualify because of the importance of protecting these species.

Significant shoreland habitats and major marshes are designated in the planning process. Uses which would conflict with protection of wetland or habitat values are not allowed. Other uses are allowed only if it is demonstrated that they will not conflict with protection of natural values.

RIPARIAN VEGETATION

iparian vegetation is a dense narrow band of trees and shrubs at the edge of a water body. Riparian vegetation buffers estuarine waters from adjacent land uses and is an important wildlife habitat. Riparian vegetation is probably most important because it is a concentration point for a great variety of wildlife, providing food and cover near water. It also protects the quality and quantity of water for wildlife, and often is an important shelter and food source for fish. Riparian vegetation also permits greater use of open agricultural lands as wildlife feeding areas by providing needed cover. Most furbearing animals inhabit this zone. It also provides important nesting areas for songbirds, osprey, and wood ducks. Elk and deer use riparian vegetation for cover.

A wide variety of man's activities, including logging, road construction, and streambank protection, have destroyed and damaged riparian habitat in the past. Because of its importance to water quality, Goal 17 requires that riparian vegetation be retained and protected. Permanent removal of riparian vegetation is usually only allowed for water-dependent uses. Most local ordinances require that development in shorelands be set back from the shoreline and that riparian vegetation not be removed. Where bank stabilization is required to prevent erosion, most ordinances require that riparian vegetation be replanted.

HABITAT CLASSIFICATION

CHAPTER THREE

INTRODUCTION

stuaries are not a single habitat, but rather a complex and interrelated web of habitats defined and distinguished by the interplay of geology, river-flows, tides, and other factors. Together these factors affect the composition, distribution and productivity of the biological communities that make up the living part of Oregon's estuaries. A major change in any single factor can create an environment suited to a wholly different set of species. In addition, the environmental requirements of a species may vary considerably throughout its life cycle and activities. For example, the environments in which a single species feeds, rests and spawns will usually differ.

Distinguishing between different habitats is important to understanding the effects of different kinds of activities and managing their impacts. Through the estuary classification scheme discussed below it is possible to identify unique environments that tend to control the production and composition of the communities that utilize them. It is possible to classify those environments by using only a few different parameters.

Oregon Estuarine Habitat Classification System⁶

In 1979, the Oregon Department of Fish and Wildlife (ODFW) published a series of maps and reports that classified the various habitats in each of Oregon's major estuaries. Completed soon after LCDC adopted Statewide Planning Goals concerning coastal resources, ODFW'S maps were intended to be used by local governments as they developed their estuary management plans.

ODFW's classification system is based on a United States Fish and Wildlife Service (USFWS) habitat classification system (Cowardin et al., 1977) that was designed to address a large variety of parameters affecting aquatic habitats. Since the USFWS system was designed to be applicable to all types of aquatic habitats nationwide, it includes parameters that were unnecessary for describing Oregon's estuarine habitats. Consequently, ODFW modified the system to utilize only those parameters that have the greatest influence on Oregon's estuarine habitats.

Classification of habitats and their communities is useful in evaluating the potential environmental impacts of site-specific proposals on an estuary. The ODFW estuarine habitat classification system incorporates tidal regime, landform, and sediment or vegetation type. These have been identified as primary factors controlling the composition of biological communities. Although a classification system that relies heavily on benthic substrates does not address all types of estuarine communities, sessile plants and invertebrates are directly influenced by bottom types, and adaptations for burrowing, attachment, and feeding are closely linked to specific types of substrate. The distribution of fishes and other mobile species is dependent at least in part on the availability of feeding and spawning areas and protective cover along the estuary bottom.

Sediment distribution indicates both the source of the parent material and the velocity and direction of tidal or river forces transporting the sediment. Therefore, habitat distribution is also influenced by the balance of these forces. For example, river-dominated systems have a high percentage of low-salinity subtidal habitats based on terrestrial sediments. Estuaries with a greater marine influence typically have large amounts of intertidal habitat and a mixture of both marine and riverine sediments. Consequently, they offer greater diversity of habitat types and, in turn, probably support a greater diversity of species.

Finally, it is important to distinguish between sediment type and habitat type, since similar classes of substrate alone do not represent similar environments. For example, communities that inhabit subtidal sand bottoms in the lower and upper estuary often differ significantly due to variations in salinity, flow velocity, or other factors independent of substrate type. Thus the location of a substrate type within the entire estuarine system will affect the species composition utilizing that habitat.

	2.5.14	Shrub
sh	2.5.13	Fresh Marsh
	2.5.12	High Salt Marsh
C.2 IVAN	2.5.11	Low Salt Marsh
cn		
beacn r	2.4.6	Cobble/Gravel
Bar	2.4.1	Sand
Bed	2.3.10	Algal
Bec	2.3.9	Seagrasses
<i>k</i> .3	2.2.6	Cobble/Gravel
	2.2.5	Wood Debris/Organic
r lat	2.2.4	Shell
	2.2.3	Mud
2.2	2.2.2	Sand/Mud (mixed)
	2.2.1	Sand
	2.1.8	Bedrock
	2.1.7	Boulder
	2.1.6	Cobble/Gravel
	2.1.5	Wood Debris/Organic
	2.1.4	Shell
1.2	2.1.3	Mud
	2.1.2	Sand/Mud (mixed)
	2.1.1	Sand
latic		
F		Algal
Bed	1.3.9	Seagrasses
-i		
OCK		Bedrock
otto	1.2.7	Boulder
B		
8	1.1.6	Cobble/Gravel
are		Wood Debris/Organic
LI Unconsoliaatea Bottom	1.1.4	Shell
otto	1.1.3	Mud
B	1.1.2	Sand/Mud (mixed)
D C	1.1.1	Sand
T-T		

INTERTIDAL

Ni

SUBTIDAL

÷

ESTUARINE SUBSYSTEMS

t is possible to broadly define four types of subsystems in Oregon's estuaries which are distinguished by geologic, riverine, and tidal forces. These forces determine the shape and depth of the estuarine basin and the distribution of salt and other material throughout the system.

Marine

The marine subsystem is a high energy zone located near the estuary mouth. The bottom is influenced by strong currents, and the substrate is primarily coarse marine sand, cobble, or rock. Salinities are generally high due to the dominance of ocean water, but may be greatly reduced during high river flows in winter. Kelp and other algal species often cover the rock substrates and form microhabitats for many species. Benthic invertebrates may include marine and estuarine species and fish utilizing the marine subsystem are marine species.

Bay

The bay subsystem is a relatively protected environment, often characterized by a broad embayment between the estuary mouth and narrow upriver reaches of tidewater. Normally the bay subsystem has a large percentage of intertidal land. Since it is influenced by both the marine and the riverine systems, bay sediments are primarily a mixture of coarse marine sands and fine river-borne silts and clays. Salinities during the summer are moderate to high, depending on the basin size, but may vary considerably with tidal stage and freshwater flow. Most bays have a wide diversity of habitats with extensive intertidal flats, eelgrass beds, algal beds, and marshes.

Riverine

The riverine subsystem includes the upper tidewater portions of the larger tributaries which enter the estuary. A large percentage of the subsystem is narrow, subtidal river channel. Current velocities exhibit dramatic seasonal changes which influence benthic communities. Salinities are low most of the year, and portions of the subsystem may be entirely fresh water. Sediments range from fine silts and clays to cobble and gravel. Small fringing marshes frequently occur on narrow, intertidal portions of the river bank; riparian vegetation typically lines river banks where there are no marshes.

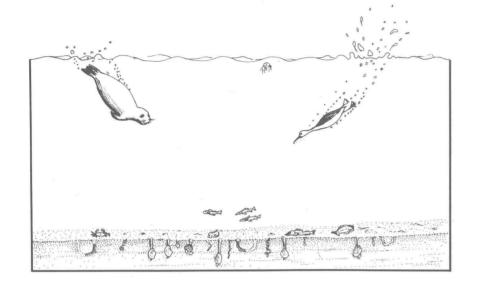
Slough

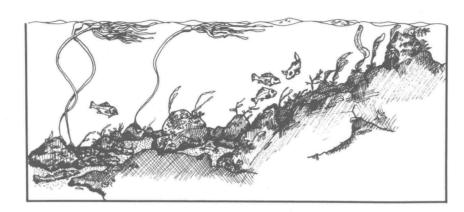
The slough subsystem is a sheltered environment, which is usually a narrow, isolated arm of the estuary with a very limited freshwater flow from uplands. Salinity is influenced by the proximity of the slough to the estuary mouth. Sloughs usually have fine organic sediments and high percentages of intertidal land consisting of flats, eelgrass beds, and marshes.

COMMONLY OCCURRING HABITAT TYPES IN OREGON ESTUARINE SUBSYSTEMS

HABITAT CLASS:

SUBTIDAL	MARINE	SUBSYSTEM BAY	SLOUGH	RIVERINE
Unconsolidated Bottom	Sand Cobble/ gravel	Sand Sand/mud Mud	Sand Sand/mud Mud Cobble/ gravel	Sand Sand/mud
Rock bottom	Boulder Bedrock	Boulder Bedrock		Bedrock
Aquatic bed	Algae	Algae Eeelgrass	Algae Eelgrass	
INTERTIDAL				
Shore	Sand Boulder Bedrock Cobble/ gravel	Sand Sand/mud Mud	Sand Sand/mud Mud	Sand Sand/mud Mud Cobble/ gravel
Flat	Sand	Sand Sand/mud Mud	Sand Sand/mud Mud	
Aquatic bed	Algae	Algae Eelgrass	Algae Eelgrass	
Beach/bar	Sand Cobble/ gravel			
Tidal marsh	Low salt marsh	Low salt marsh High salt marsh Diked marsh	Diked marsh Fresh marsh High salt marsh Shrub marsh	Low salt marsh High salt marsh Diked marsh Fresh marsh


TIDAL REGIME

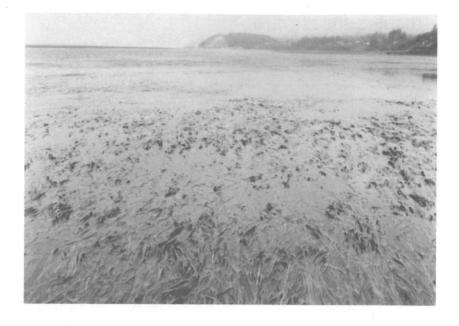

Subtidal habitats are below extreme low water, and thus have continuously submerged substrates. Intertidal habitats are exposed and flooded by tides as often as twice daily or as seldom as a few times a year. The upper limit of the intertidal zone is defined for regulatory purposes as the line of nonaquatic vegetation, or as mean higher high water where such a line cannot be determined.

Within intertidal areas, a marked zonation of species is often apparent due to variation in the frequency and duration of exposure between lower and upper intertidal elevations. Although modifiers indicating tidal regime may be appropriate to differentiate intertidal habitats, intertidal elevations are not presently mapped for any Oregon estuaries.

ide is a major limiting factor for many species in aquatic environments. The classification system distinguishes between intertidal and subtidal habitats, since biological communities often differ significantly according to the degree of tidal influence. Special adaptations are required by intertidal species to resist desiccation and tolerate large variations in temperature and salinity associated with tidal exposure.

Unconsolidated bottom (1.1)

he habitat classification system identifies a range of sediment sizes that represent unique subtidal environments for benthic species. Physiological and morphological adaptations of benthic organisms allow certain species to flourish in particular types of sediment. For example, feeding adaptations of invertebrates are related to sediment size. Coarse, clean sands are generally inhabited by organisms that filter food from the water column. In guiet waters where fine, organically rich muds occur, deposit-feeding polychaetes or other invertebrates ingest the sediment directly.


Since sediments largely influence the type of invertebrates colonizing an area, activities which alter sediment characteristics have a significant impact on benthic communities. Although dredge or spoil sites can be recolonized, community structure will vary with new sediment properties. Activities of structures that alter existing currents affect patterns of erosion and deposition. Where deposition is rapid, benthic communities may be smothered, and where erosion is significant, only organisms adapted to unstable substrates may survive. An important consideration in evaluating proposed development in estuaries is its impact on current patterns and sedimentation processes, and the resulting effects on benthic habitats and communities.

Sand-mud bottoms are typically higher in organic content than sand bottoms, and are firmer and more aerated than mud. Mud bottoms are primarily silt and clay; organisms living in mud must be able to tolerate low oxygen concentrations. Wood and organic debris bottoms will be found where current velocities are low or where there is a continuous supply of organic material. Finally, finer sediments may be intermixed with cobble/gravel substrates.

Rock bottom (1.2)

D ock habitats in the high salinity zone near estuary mouths are highly productive environments for marine fishes and invertebrates. They are defined as being less than 30 percent covered with vegetation. Most subtidal rock habitats are located near the mouth where strong tidal currents and turbulence require that organisms be firmly attached to the substrate or seek the protection of sheltered cracks and crevices. Rock outcrops also extend into the upper estuary, particularly in the smaller systems south of Cape Blanco. Jetties have created the most extensive rock bottom habitats in Oregon estuaries.

Specialized and diverse fauna are adapted for attachment or browsing along rock substrates. Sucking devices such as the tube feet of star fish or more permanent methods of attachment such as the byssus threads of mussels are examples of adaptations to rocky substrates. Soft silt and sandstone outcrops in a few locations provide a unique habitat for highly specialized piddock clams capable of boring into the rock. A diversity of algal species attach to rocky substrates with a strong basal holdfast.

Aquatic bed, Subtidal (1.3) and Intertidal (2.3)

The aquatic bed category includes both subtidal and intertidal algal and eelgrass beds that frequently occur in bay and slough subsystems. These communities probably represent a significant portion of the primary production in Oregon estuaries. Eelgrass is the most common species of seagrass in Oregon estuaries. It grows in both sand and mud substrates. It is a rapid growing plant that provides habitat for a diverse community of estuarine plants and animals. Its leaves support large numbers of algal and invertebrate epiphytes which are consumed by fish and larger invertebrates and are the primary food of black brant during their migration along the Oregon coast. Clam beds are often associated with eelgrass. In some estuaries, eelgrass leaves provide a spawning surface for herring. Thick beds of eelgrass reduce currents near the bottom and promote deposition of sediment, while roots and rhizomes bind sediments and prevent erosion. Finally, eelgrass decomposition contributes nutrients to the detrital food chain.

Algal beds occur over unconsolidated or rock substrates and also provide habitat for fish and invertebrates. Huge mats of algal species turn broad intertidal flats bright green during spring and summer. Biomass then declines as the algae decays and releases nutrients to the system. In some deeper high salinity areas where there is suitable substrate for attachment, long blades of kelp may be seen floating at the water's surface. Kelp holdfasts represent a unique microhabitat for a rich community of invertebrates.

Plant production in Oregon estuaries is highly seasonal. The timing of fish migrations, spawning, and invertebrate reproduction in estuaries corresponds closely with dramatic increases in plant production during the spring and summer.

Reduction of light penetration due to shading or turbidity can limit plant growth. Logging and road construction in the upper watershed and dredging activities in the estuary can increase turbidity. Reduced flushing of eelgrass and some algal communities may decrease nutrient and gas exchange and, as a result, plant production. Significant modification of temperature or salinity patterns from changes in freshwater flow or estuarine circulation may further threaten aquatic beds.

Shore (2.1)

hores are narrow, steeply sloped intertidal habitats that occur 3 where river and tidal currents are relatively strong. Because these are generally high energy environments, rocky substrates or coarse sediments often predominate. Algal and invertebrate species are firmly attached to rocky shores, but waves and currents may limit plant and animal production on unstable, unconsolidated shores.

As in other intertidal habitats, there is a pronounced zonation of plant and animal species from lower to upper intertidal elevations, with generally fewer species inhabiting the upper intertidal zone. In some estuaries, mud and sandy shores are inhabited by burrowing or tube-dwelling invertebrates which are food sources for bottom-feeding fishes at high tide.

Substrate composition of shorelines may change periodically due to scouring. Smaller particles may be removed, while cobbles, boulders, and bedrock can be seasonally covered by sand or gravel.

Flat (2.2)

B road intertidal flats commonly occur in the slough and bay subsystems of Oregon estuaries. They are generally sheltered from strong currents and wave action and their gradual slopes tend to dissipate wave and tidal energies. As a result, flats form a relatively stable environment for colonizing species. In addition, large shallow flats store heat and may have an important role in the temperature budget of the entire estuary. Ultimately, tidal flat community structure is influenced by sediment size, currents, wave action, temperature, and salinity.

Tidal flat sediments vary from fine muds to cobbles. Shallow water depths, and therefore maximum light and warm temperatures, often result in extensive algae blooms in the spring and summer, when many flats could be classified as intertidal aquatic beds.

Benthic organisms in tideflats are specially adapted to sediment sizes and the temperatures and exposure of an intertidal environment. So activities which alter sediment characteristics or tidal elevations can be expected to influence benthic communities. Filling and dredging represent the most obvious threats to flat habitats. Flats have historically been filled to extend the area of level upland available for shoreland development in estuaries.

Low-tide grounding of logs stored on intertidal flats and shores has decimated benthic populations. Bark and wood debris near log storage sites can adversely affect water quality. Sewage, fish wastes, or other organic pollutants discharged over flats may also accumulate in the sediments and reduce oxygen levels. Consequently, large numbers of invertebrates that are indicative of degraded habitats colonize these areas, and species diversity decreases.

In some estuaries, logging activities in the upper watershed have tremendously increased the rate of sedimentation. Tillamook Bay has been rapidly filled since the area was first settled. This has greatly increased the acreage of flats and decreased the area of subtidal habitat.

Cockle, gaper, butter, littleneck and softshell clams and mud and ghost shrimp are frequently associated with Oregon mud and sand flats. Recreational clamming is popular in these areas during low tides, particularly in the spring and summer. Bottom-feeding fishes graze over flats during high tide. Great blue heron, great egret and a variety of shorebirds feed in the shallows as the tides recede.

Beach/bar (2.4)

and polychaetes.

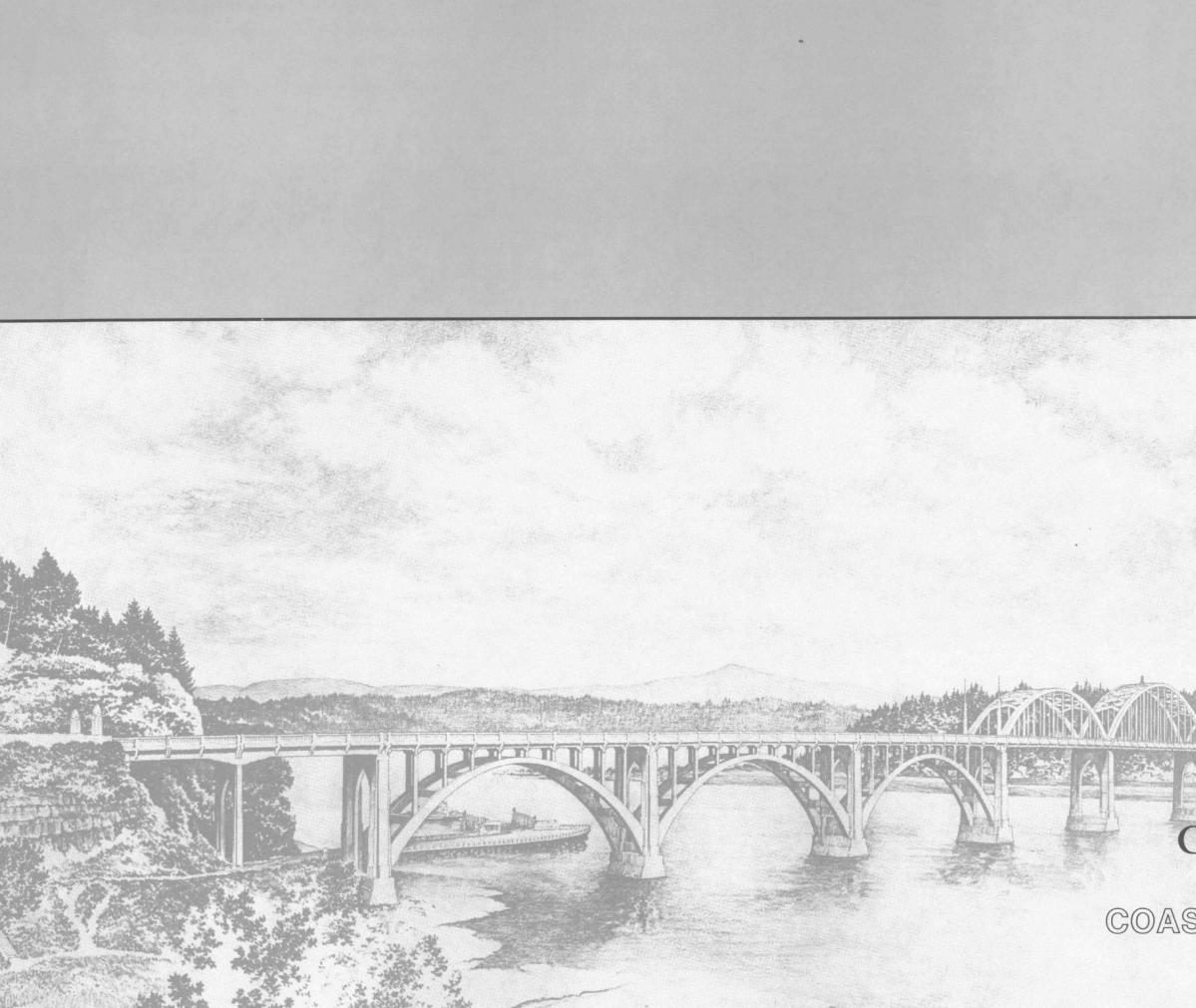
Shallow intertidal bars may extend as spits from shores near the mouths of estuaries. In larger systems, these may be periodically dredged to provide a navigable channel into the estuary. Gravel removal operations have occurred on bars in the riverine sections of a few south coast estuaries.

each and bar habitats are dynamic environments subject to strong water currents in the form of tides, waves and river flow. They always have less than 30 percent vegetative cover. Bars occur within estuaries as elongated ridges of coarse sand, cobble, or gravel, and are bordered by water on at least two sides. In Oregon, bars form during summer at the mouths of smaller blind estuaries and, in some cases, prevent marine water from entering the estuaries. Shifting bars also occur near the mouths of larger estuaries or in upper riverine sections. Because bars continually shift with the currents, colonization is limited to rapidly burrowing and opportunistic species, including molluscs, crustaceans,

HABITAT CLASSIFICATION

Tidal marsh (2.5)

I idal marshes are characterized by rooted herbaceous or woody hydrophytes that grow between lower high tide and the line of nonaquatic vegetation. These can be divided into four major subclasses: high and low salt marsh in marine and brackish areas, and fresh and shrub marshes beyond saltwater influence. Composition of these marsh communities varies with tidal elevation, sediment types, and salinity regime.


Marshes are an important habitat for invertebrates, waterfowl, small terrestrial mammals, and insects. Detritus-feeding snails, scavenging crabs, and a variety of amphipods and other invertebrates seek the food and/or protection of marshes. The well-defined channels of high marshes are heavily used by juvenile Dungeness crab and a variety of small fishes. In some areas, they may provide important rearing habitat for juvenile chinook salmon. Marshes also provide resting and feeding areas for large populations of migrating waterfowl.

Salt marshes have been ranked among the most productive ecosystems in the world. Plant producers in salt marshes include marsh grasses, macroalgae entwined among the grass stems, microalgae on the mud surface, and phytoplankton in the water column. Organic material and nutrients stored by marsh producers are consumed directly, or transferred to other portions of the estuary as detritus.

Estuarine marshes are important sediment traps that reduce the frequency of dredging required for navigation. They help to stabilize the shore, dissipate flood waters, and protect shoreland property from storms. Marshes also filter and process nitrates, phosphates, and other wastes, thus providing a pollution buffer between adjacent upland activities and the estuary.

Tremendous areas of Oregon marsh have been diked to create upland for pasture and other uses. Such diking has greatly reduced estuarine integrity and productivity. Extensive diking has resulted in altered marsh community composition, channelized estuarine water courses, reduced productive intertidal surface area, and restricted transport of organic materials and nutrients to and from the estuary. Construction of causeways and roadbeds has had identical results. Filling for shoreland development has sacrificed huge expanses of marsh in many Oregon estuaries.

COASTWIDE SUMMARY

CHAPTER FOUR

ESTUARY PLANS

regon has 21 major estuaries and 15 minor estuaries totalling approximately 133,000 acres. This amounts to roughly two-tenths (0.2) of 1 percent of the land area of the state. Compared to other coastal states, Oregon has very little estuarine area. The size of Oregon's estuaries is a result of the state's geology. Oregon's estuarine area is limited because of its relatively steep coastal shoreline.

The amount of development in and around each of Oregon's estuaries varies. Three estuaries have been relatively intensively developed for commerce and navigation. The Columbia River, Coos Bay, and Yaquina Bay all support major port operations. These ports are a vital link in the flow of goods to and from Oregon and are critical to the state's economic well-being.

Eight other estuaries have been developed less intensively for commerce or navigation. These shallow draft development estuaries have maintained jetties and channels to support commercial and recreational fishing and boating, and some commerce and related activities like boat building or fish processing. While these estuaries are less intensely developed than the three deep draft estuaries, they are nonetheless important to the coastal economy.

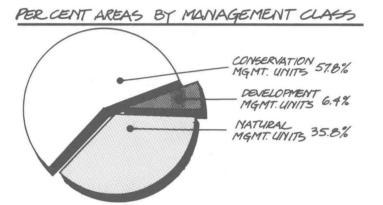
ment.

Generic Zoning Categories

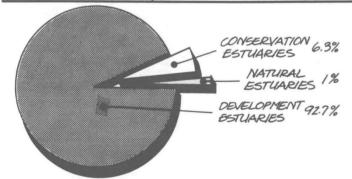
D) espite great similarities, each city and county on the coast uses different plan designations and zones. The maps and tables in Chapter Five show these official plan and zoning designations used by local governments. The generic codes used below have been developed to allow coastwide summaries and to allow comparison between plans for different estuaries.

COASTWIDE SUMMARY OF OREGON'S

Several other estuaries have towns along their shores, but only limited alterations to the estuary. These estuaries usually support some recreational boating and fishing but mostly these estuaries are undeveloped. Still others have been almost untouched by surrounding human develop-



COASTWIDE SUMMARY


Management Unit Summary

ach of Oregon's estuaries is divided into a series of management units. The chart at right shows the distribution of the three different types of management units in each estuary and within the four different overall estuary classifications.

Not every estuary contains each type of management unit. While development estuaries contain all three types of management units, conservation estuaries have only conservation and natural management units, and natural estuaries have only natural management units. These limits are required by the Goal-based overall estuary classification. The overall classification adopted by LCDC generally reflects the extent of development which has occurred in each estuary. For example, Coos Bay has been extensively altered to provide for water-oriented development. while Salmon River and Sand Lake appear much as they did 100 years ago.

PER CENT AREAS BY ESTUARY CLASSIFICATION

Overall Classification vs. Management Unit

The chart at right illustrates the difference between the overall classification system and management unit designations within estuaries. Although 92.7 percent Oregon's estuarine lands are within estuaries designated for development, over 86 percent of those estuaries are designated as natural or conservation management units. In fact, only 8,405.4 acres, or 6.4 percent of Oregon's estuaries, are within development management units. The largest single category is conservation management units—some 76,200 acres, or about 58 percent of Oregon's estuaries, are designated for conservation. The remaining 47,200 acres (36 percent) of Oregon's estuaries are in natural management units.

AREA OF MANAGEMENT UNIT TYPES IN OREGON ESTUARIES

MANAGEMENT UNIT TYPES

ESTUARY TYPE/NAME	TOTAL	AREA	NATU	RAL	CONSE	RVATION	DEVELO	OPMENT
	ACRES	PERCENT	ACRES	PERCENT	ACRES	PERCENT	ACRES	PERCENT
TOTAL	131844.5	100.0%	47217.5	100%	76221.6	100%	8405.4	100%
Portion of Total		100.0%		35.81%		57.81%		6.38%
DEVELOPMENT	122163.4	92.7%	39697.5	84%	74060.5	97%	8405.4	100%
Deep Draft	98461.3	74.7%	26845.7	57%	65077.7	85%	6537.9	78%
COLUMBIA	80811.8	61.3%	16557.7	35%	61283.8	80%	2970.3	35%
YAQUINA BAY	4349.0	3.38	2036.7	48	1301.1	2%	1011.2	12%
COOS BAY	13300.5	10.1%	8251.3	17%	2492.8	3%	2556.4	30%
Shallow Draft	23702.1	18.0%	12851.8	27%	8982-8	12%	1867.5	22%
MARKEN SAM				2				
NEHALEM BAY	2749.0	2.18	1610.6	38	951.7	18	186.7	2%
TILLAMOOK BAY	9216.3	7.0%	4762.7	10%	4320.7	68	132.9	2%
SIUSLAW RIVER	3060-4	2.3%	1485.2	38	1466.3	2%	108.9	1%
UMPQUA RIVER	6543.6	5.0%	4340.2	98	1057.4	18	1146.0	14%
COQUILLE RIVER	1081.7	88.0	532.8	1%	433.1	18	115.8	18
ROGUE RIVER	880.0	0.78	115.6	80	642.8	18	121.6	18
CHETCO RIVER	171.1	0.1%	4.7	80	110.8	80	55.6	18
CONSERVATION	8345.8	6.3%	6184.7	13%	2161.1	3%	_	
NECANICUM RIVER	450.8	0.3%	19.3	80	431.5	1%	-	_
NETARTS BAY	2742.9	2.1%	2391.3	5%	351.6	. 08	-	-
NESTUCCA BAY	1175.6	0.9%	821.5	2%	354.1	0%	-	_
SILETZ BAY	1460.6	1.1%	1109.5	2%	351.1	0%	_	-
ALSEA BAY	2515.9	1.9%	1843.1	48	672.8	1%	-	-
NATURAL	1335.3	1.0%	1335.3	3%	-	_	-	_
SAND LAKE	897.4	0.7%	897.4	2%	-	-		-
SALMON RIVER	437.9	0.3%	437.9	1%	-	-	-	-

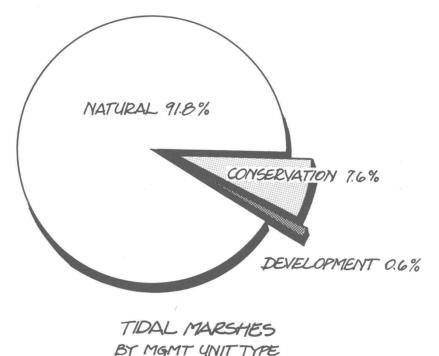
AREA OF SHORELAND ZONING SURROUNDING EACH ESTUARY (IN ACRES)

ESTUARY BY CLASS	TOTAL SHORELAND AREA	FOREST	FARM USE FU	FARM/ FOREST FF	RECREATION	RURAL RESIDEN- TIAL RR	URBAN RESIDEN- TIAL UR	COMMERCIAL	INDUS- TRIAL I	WATER DEPENDENT /RELATED WDR	PUBLIC	CONSERVA- TION CON
	54202 0	5 404 7	405.00 0	070 0	5990.2	4054.3	4389.7	1576.6	3022.0	3387.9	1352.8	8756.8
TOTAL ACREAGE	51382.0	5404.7	12568.2	878.8	5990.2	4034+3	4307.1	1370.0	3022.0	3307.9	1352.0	0,000
DEVELOPMENT	41494.2	4626.6	10484.2	818.7	4267.7	2855-8	1653.3	891.5	2865.2	3336.4	938.0	8756-8
Deep Draft	21233-2	1100.7	5271.7	550.5	2038.9	2125.6	896.6	455.9	2466.4	2692.2	45.8	3588.9
COLUMBIA RIVER	11762.1	209.6	3951.3	237.9	355.3	774.6	485.5	345.7	1117.3	866-2	-	3418.7
YAQUINA BAY	1721.3	365.3	123.8	-	-	288.5	126 . 1	46.2	247.3	331.6	45.8	146.7
COOS BAY	7749.8	525.8	1196.6	312.6	1683.6	1062.5	285.0	64.0	1101.8	1494.4	-	23.5
												5467.0
Shallow Draft	20261.0	3525.9	5212.5	268.2	2228-8	730.2	756.7	435.6	398.8	644.2	892-2	5167.9
NEHALEM BAY	3020.2	83.5	1329.9	11.1	1126.0	253.0	98.3	29.4	9.0	80.0	-	-
TILLAMOOK BAY	5280.0	2313.8	884.3	149.7	1022-8	81.0	346.3	248.2	67.6	92.7	70.6	
SIUSLAW RIVER	3648.4	994.5	1304.3	—	-	250.1	243.7	14-4	46.6	203.5	5.6	
UMPQUA RIVER	6414.9	83.7	732.0	87.5	-	-	-	73.1	103.6		758.5	
COQUILLE RIVER	726.6	50.4	247.0	-	55.7	11.5	42.1	5.0	80.4		17.2	
ROGUE RIVER	993-2	-	715.0	18.0	24.3	111.5	-	13.7	35.1		40.3	
CHETCO RIVER	177.7	-	-	1.9	-	23.1	26.3	51.8	56.5	18.1	-	-
CONSERVATION	8026-4	332.0	1597.1	15.9	1309.9	761.5	2736-4	650.5	156.8	51.5	414.8	
	0570.5			4	179.7	117.9	1532.5	264.3	156.8	- -	321.8	_
NECANICUM RIVER	2579-6	-	6.6	2.5		160.6	151.6		-	14.1	-	_
NETARTS BAY	964.0	15 • 2 22 • 8	671.3	13.4		20.0	114.2		-	-	_	-
NESTUCCA RIVER	1420.7 1753.9	84.7	656.1	-	523.1	363.9	454.9		_	15.0	_	_
SILETZ BAY ALSEA BAY	1308-2	209.3	263.1	_	_	99.1	483.2		-	22.4	93.0	-
		38 G G - 68										
NATURAL	1861.4	446.1	486.9	44.2	412.6	437.0		34.6	-	-	-	
SAND LAKE	806 - 1	217.9	54.8	44.2	388-1	101.1	-	-	-	-	-	-
SALMON RIVER	1055.3	228.2	432-1	-	24.5	335.9	-	34.6	-	-	-	-

Shoreland Zoning

ands surrounding Oregon's estuaries are used for a great variety of b purposes. Correspondingly, the zoning of these lands allows for a variety of uses. Compounding this variety is the fact that each of the twenty-nine cities and counties charged with planning for shorelands has its own unique set of plan and zone designations. The chart at left is a compilation of local zones into eleven categories. Although these generic groupings do not reflect the nuances of local zoning, they provide a general indication of the uses allowed.

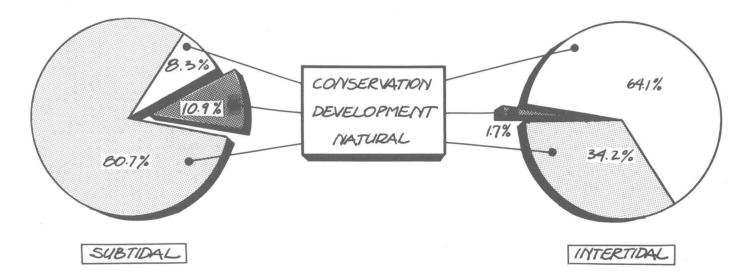
Several of the zoning categories correspond to Statewide Planning Goal requirements. Forest lands (F) are generally lands covered by Statewide Planning Goal 4 (Forest Lands). Lands within the the farm use category (FU) are usually lands subject to Goal 3 (Agricultural Lands). Lands within the rural residential category are typically lands where local government has adopted a built and committed exception to allow continued development. The other generic categories reflect the zoning categories used by most cities and counties. A matrix showing how individual zones relate to the categories shown here is included in the Appendix.


Shoreland zoning illustrates the setting which surrounds each of our estuaries. Farm and forest lands, and state parks and other open space lands make up the bulk of land around estuaries. They comprise about 39,000 acres, or 76 percent of estuarine shorelands. Lands zoned for more intense development, including commercial, industrial, urban residential, and water-dependent/related uses, cover only about 12,376 acres, or 24 percent, of the estuarine shoreline.

Shoreland development is not always a good indicator of estuarine development. For example, the Necanicum River is by far the estuary with the most urbanized shoreline - 99 percent of the shoreline is within the Gearhart and Seaside urban growth boundaries. Yet the Necanicum is a conservation estuary, and the plan for the estuary anticipates very little additional development. By contrast, the Coos Bay estuary, which is designated for development, also has extensive shoreland areas that are zoned for farming, forestry, and other rural uses.

COASTWIDE SUMMARY

HABITAT DISTRIBUTION BY MANAGEMENT UNIT TYPE


his table shows the distribution of different habitats by both the type of management unit and the overall estuary classification. Note that management units are the individual zones within each estuary. Estuary classification is the overall designation for the entire estuary. As noted above, the types of management units permitted in an estuary depend on its overall classification.

			Uncon- solida- ted	Rock	Aquatic		Shore	Flat	Aquatic	Beach and	Tidal
MANAGEMENT UNIT	TOTAL	SUBTIDAL	Bottom	Bottom	Bed	INTERTIDAL			Bed	Bar	Marsh
TYPE/	AREA										
Estuary Class		1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
TOTAL	131844.5	66938.8	66324.5	63.7	550.6	64905.7	1754.0	30852.6	8693.6	4071.9	19533.6
NATURAL UNITS	47217.5	5585.7	5244.2	4.4	337.1	41631.8	821.4	12605.4	7115.0	3161.9	17928.1
Natural	1335.3	237.4	209.2	-	28.2	1097.9	7.3	266.9	113.3	9.0	701.4
Conservation	6184.7	404-8	364.8	-	40.0	5779.9	48.4	2441.6	2143.2	12.3	1134.4
Development	39697.5	4943.5	4670.2	4.4	268.9	34754.0	765.7	9896.9	4858.5	3140.6	16092.3
CONSERVATION UNITS	76221.6	54025.9	53805.5	44.4	176.0	22195.7	708.8	17783.7	1337.8	855.1	1492.3
Conservation	2161.1	1483.8	1476.9	-	6.9	677.3	81.9	275.9	37.8	117.1	164.6
Development	74060.5	52542.1	52328.6	44.4	169.1	21518.4	626.9	17525.8	1300.0	738.0	1327.7

DEVELOPMENT UNITS

Development	8405-4	7327.2	7274.8	14.9	37.5	1078-2	223

Tidal Marshes by Management Unit Type

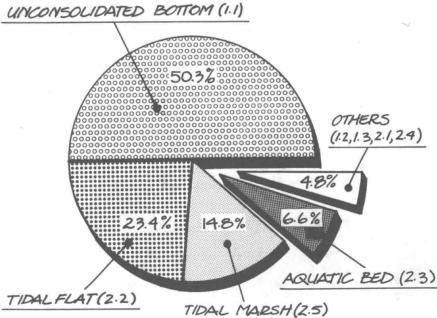
Literally thousands of acres of tidal marsh have been diked, filled, or otherwise altered and removed from estuaries. Reversing this trend is a major purpose of estuary planning. The chart above indicates that only 113.2 acres, or less than 0.6 percent of our existing tidal marshes, are designated for future development. Of the remainder, some 91.8 percent is designated for preservation in natural management units, with 7.6 percent in conservation management units.

Tidal Regime of Management Units

Each type of management unit includes a distinct mixture of habitats. Natural management units are principally intertidal areas. Sixty-four percent of intertidal lands, or some 42,000 acres, are in natural management units. Conservation management units are a more balanced mix of intertidal and subtidal, while development management units are principally subtidal lands. This indicates that shallower areas are generally more productive and sensitive to alterations, while deeper areas are more suited to development.

32 COASTWIDE SUMMARY

HABITAT CLASS DISTRIBUTION BY MANAGEMENT UNIT TYPE (Area in Acres)


23.8 445.5 240.8 54.9 113.2

ESTUARINE HABITAT CLASS DISTRIBUTION BY ESTUARY (Area in Acres)

ESTUARY CLASS/NAME	Total Area Of All Estuarine Habitat Units	SUBTIDAL	Uncon- solida- ted Bottom 1.1	Rock Bottom 1.2	Aquatic Bed 1.3	INTERTIDAL 2.	Shore 2.1	Flat 2.2	Aquatic Bed 2.3	Beach/ Bar 2.4	Tidal Marsh 2.5
TOTAL	131844-5	66938.8	66269.9	63.7	605.2	64905.7	1754.0	30834.6	8693.6	4071.9	19551.6
DEVELOPMENT ESTUARIES	122163.4	64812.8	64219.0	63.7	530.1	57350.6	1616.4	27850.2	6399.3	3933.5	17551.2
Deep Draft	98461.3	55296.2	54937.5	54.9	303.8	43165.1	972.8	21644.6	2874.5	3819.4	13853.8
COLUMBIA RIVER	80811-8	47914.8	47864.1	50.7	-	32897.0		17539.5			11506.3
YAQUINA BAY	4349.0	2003.1	1948-3	4.2	50.6	2345.9	194.9			-	621.0
COOS BAY	13300.5	5378.3	5125.1	-	253.2	7922.2	691.0	3492.8	1956-8	55.1	1726.5
Shallow Draft	23702-1	9516.6	9281.5	8.8	226.3	14185.5	643.6	6205.6	3524.8	114.1	3697.4
NEHALEM BAY	2749.0	1000-9	991.0	-	9.9	1748.1	157.5	400.7	641.9	23.4	524.6
TILLAMOOK BAY	9216.3	2123.1	2082.3	-	40.8	7093.2	113.2	4113.1	1982.5	-	884.4
SIUSLAW RIVER	3060.4	1441.6	1426-5	8.8	6.3	1618.8	134.6	358.0	331.6	30.5	764.1
UMPOUA RIVER	6543.6	3748.4	3748.4	-	-	2795.2	123.6	1021.6	400.1	49.1	1200.8
COQUILLE RIVER	1081.7	475.5	475.5	-	-	606.2	79.4	149.3	102.5	-	275.0
ROGUE RIVER	880.0	574.7	557.8	-	16.9	305.3	29.2	160.2	60.4	11.1	44.4
CHETCO RIVER	171.1	152.4	54.6	-	97.8	18.7	6.1	2.7	5.8	-	4.1
CHEICO RIVER											
CONSERVATION ESTUARIES	8345-8	1888.6	1841.7	0.0	46.9	6457-2	130.3	2717.5	2181.0	129.4	1299.0
NECANICUM RIVER	450.8	179.1	179.1	-	-	271.7	16.4			1.4	
NETARTS BAY	2742.9	337.5	334.3	-	3.2	2405.4	27.9	1090.2	954.4	104.9	228.0
NESTUCCA BAY	1175.6	311.2	298.6	-	12.6	864.4	27.6			19.1	
SILETZ BAY	1460-6	326.4	300.9	-	25.5	1134-2	14.5			-	274-2
ALSEA BAY	2515.9	734.4	728-8	-	5.6	1781.5	43.9	715.	558+3	4.0	460-2
NATURAL ESTUARIES	1335.3	237.4	209.2	0.0	28.2	1097.9	7.3	266.9	113.3	9.0	701.4
MATURAL ESTOREES	100070										
SAND LAKE	897.4	139.5	113.7	-	25.8	757.9	2.1	253.2	39.8	-	462.8
	437.9	97.9	95.5	-	2.4	340.0	5.2	2 13.	7 73.5	9.0	238.6
SALMON RIVER											

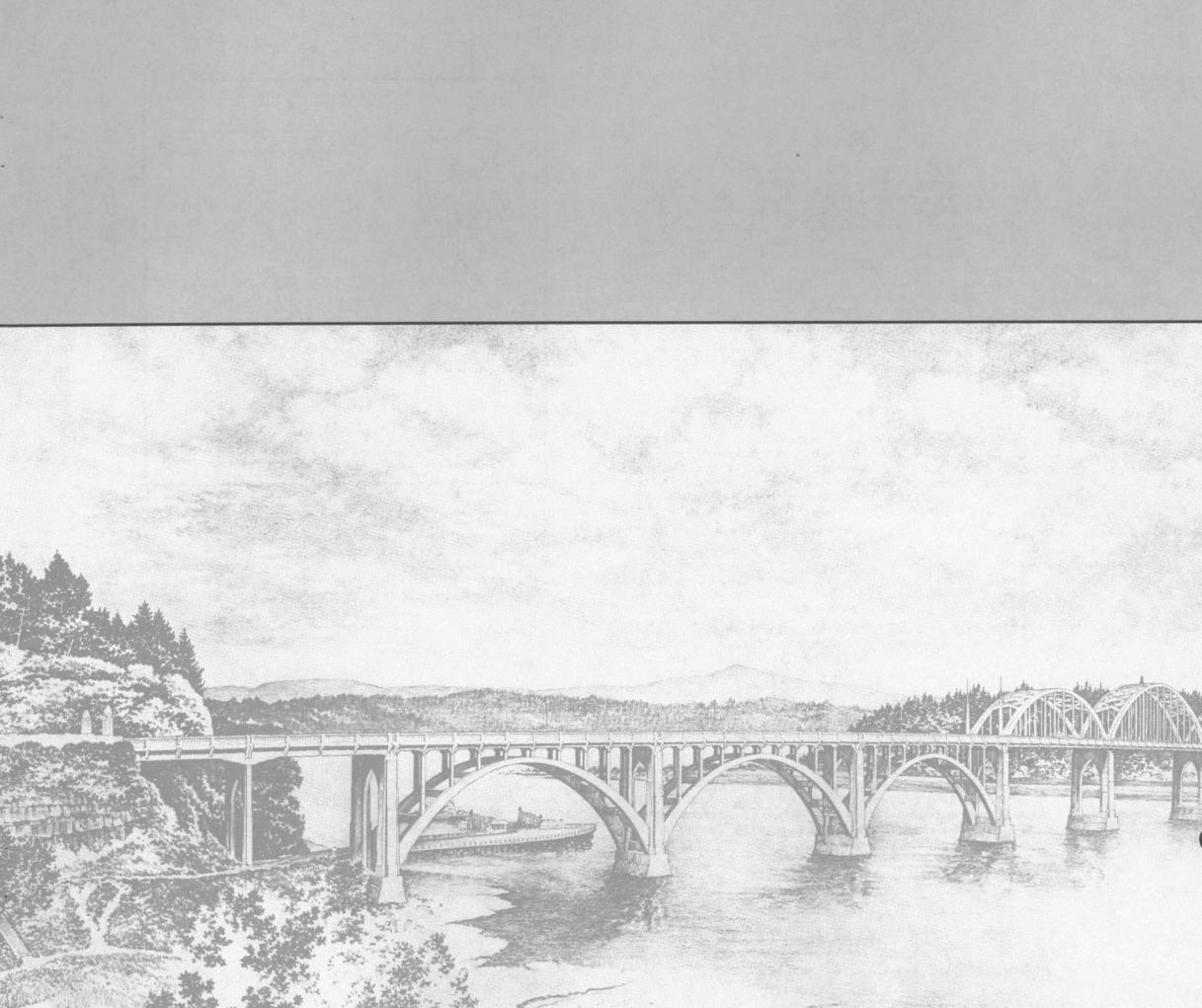
he diversity of Oregon's estuaries is best indicated by the mix of habitats in each estuary. This mixture is a reflection of the dif-ferences in geologic, tidal, riverine, and other forces that shape estuaries.

HABITAT DISTRIBUTION BY ESTUARY

Proportions of Major Habitat Types In Oregon Estuaries

Unconsolidated bottoms, tidal flats, and tidal marshes make up most habitats in Oregon's estuaries. Together these three habitats total almost 117,000 acres, or some 88 percent of Oregon's estuaries. The chart above illustrates the relative proportions of these four habitat types in each of the major estuaries, and indicates that each of Oregon's estuaries is a unique combination of habitats.

COASTWIDE SUMMARY


ESTUARY HABITAT BY SUBCLASS

he ODFW habitat classification system identifies eight basic classes of estuarine habitat. However, for researchers and others it is both possible and helpful to further distinguish different kinds of habitat within each classification. To do this, ODFW'S classification system includes a total of fifty subclasses. These subclasses enable a fuller understanding of the great diversity between different types of habitats, even within these broad classifications.

HABITAT SUBCLASS SUMMARY FOR ALL MAPPED MAJOR ESTUARIES IN OREGON (Area in Acres)

						PERCENT
		TOTAL	AREA	AREA	AREA	ESTUARIES
HABITAT C		AREA	IN	IN	IN	IN
Code	Subclass		EN	EC	ED	SUBCLASS
						10 C
	ALL HABITATS	131844.5	47217.5	76221.6	8405.4	100.000%
4		cc000 0				
1.	SUBTIDAL HABITATS	66938.8	5585.7	54025.9	7327.2	50.771%
1.1	UNCONSOLIDATED BOTTOM	66324.5	5244-2	53805.5	7274.8	50.305%
1.1	Unspecified Type	14400 5	2046 5	6054.0	2670 4	
1.1.1	Sand	14480.5 46228.0	3846.5	6954.9	3679.1	10.983%
1.1.2	Sand/Mud (Mixed)	5354.1	1129.4	42167.3	2931.3	35.063%
1.1.3	Mud	56.3	268.2	4539.0	546.9	4.061%
1.1.4	Shell	41.7	- ~	41.1	15.2	0.043%
1.1.6	Cobble/Gravel		_	16.7	25.0	0.032%
1.1.0	CODDIE/Gravel	163.9	0.1	86.5	22.7	0.124%
1.2	ROCK BOTTOM	63.7	4.4	44.4	14.9	0.048%
1.2	Unspecified	50.7	-	-	6.3	0.038%
1.2.7	Boulder	4.2	-	-	4.2	0.003%
1.2.8	Bedrock	8.8	4.4	_	4.4	0.007%
1.3	AQUATIC BED	550.6	337.1	176.0	37.5	0.418%
4.2						
1.3	Aquatic Bed	5.0	-	0.7	4.3	0.004%
1.3.9	Seagrass Bed	273.6	217.7	36.4	19.5	0.208%
1.3.9(2)	Seagrass on Sand/Mud	40.8	39.9	0.9		0.031%
1.3.10	Algal Bed	116.5	76.4	26.4	13.7	0.088%
1.3.10(6)			0.7	111.6	-	0.085%
1.3.10(7)	Algal Bed on Boulder	2.4	2.4	-	-	0.002%
2.	INTERTIDAL HABITATS	64905.7	41631.8	22195.7	1078.2	49.229%

						PERCENT
		TOTAL	AREA	AREA	AREA	ESTUARIES
HABITAT CL		AREA	IN	IN	IN	IN
Code	Subclass		BN	BC	ED	SUBCLASS
2.1	SHORE	1754.0	821.4	708.8	222.0	1 2200
	UNUT	173-200	021.4	/08.8	223.8	1.330%
2.1	Unspecified Type	321.6	80.7	226.7	14.2	0.244%
2.1.1	Sand	662.8	408.0	155.9	98.9	0.503%
2.1.2	Sand/Mud (Mixed)	202.0	93.1	104.0	4.9	0.153%
2.1.3	Mud	317.1	156.5	90.5	70.1	0.241%
2.1.5	Wood Debris/Organic	52.4	19.3	29.7	3.4	0.040%
2.1.6	Cobble/Gravel	81.8	44.9	30.0	6.0	0.062%
2.1.7	Boulder	76.7	8.6	46.8	21.3	0.058%
2.1.8	Bedrock	39.6	10.3	24.3	5.0	0.030%
					5.0	010308
2.2	FLAT	30852.6	12605.4	17801.7	445.5	23.401%
						23.4010
2.2	Flat	1161.8	880.2	227.4	54.2	0.881%
2.2.1	Sand	10194.8	3019.4	7158.0	17.4	7.732%
2.2.2	Sand/Mud (Mixed)	15922.0	5706.7	9917.3	298.7	12.076%
2.2.3	Mud	3382.4	2930.9	375.6	75.9	2.565%
2.2.5	Wood Debris/Organic	8.6	8.6	-	-	0.007%
2.2.6	Cobble/Gravel	183.0	59.6	123.4	-	0.139%
2.3	AQUATIC BED	8693.6	7115.0	1337.8	240.8	6.594%
2.3	Unspecified Type	413.4	307.1	27.6	78.7	0.314%
2.3.9	Seagrass	2539.1	2186.2	300.3	52.6	1.926%
2.3.9(1)	Seagrass on Sand	153.8	153.8	-	-	0.117%
2.3.9(2)	Seagrass on Sand/Mud	1876.5	1185.5	650.3	40.7	1.423%
2.3.9(3)	Seagrass on Mud	704.2	644.5	43.0	16.7	0.534%
2.3.9/10	Seagrass/Algal Mixed	840.5	753.6	74.6	12.3	0.637%
	2)Mixed Bed on Sand/Mud	258.8	244.5	-	14.3	0.196%
)Mixed Bed on Mud	36.7	32.7	4.0	-	0.028%
)Mixed Bed on Wood/Organ		8.4	-	-	0.006%
)Mixed Bed on Cobble/Gra		36.9	0.6	-	0.028%
2.3.10	Algal	911.1	855.0	46.4	9.7	0.691%
2.3.10(1)	-	130.7	117.7	13.0	-	0.099%
2.3.10(2)	,	308.6	288.3	9.8	10.5	0.234%
2.3.10(3)	Algal on Mud	159.0	82.6	76.4	-	0.121%
	Algal on Cobble/Gravel	172.9	117.8	54.4	0.7	0.131%
2.3.10(7)		28.9	24.2	3.4	1.3	0.022%
2.3.10(8)	Algal on Bedrock	113.5	76.2	34.0	3.3	0.086%
2.4	BEACH/BAR	4071.9	3161.9	855.1	54.9	3.088%
2.4	Unspecified Type	2.0		2.0		0.000
2.4.1	Sand	2.0	-	2.0	-	0.002
2.4.2	Sand/Mud Mixed	4045.3	3138.2	852.2	54.9	3.068%
2.4.3	Mud	8.2 15.5	8.2 15.5	-	_	0.006%
2.4.6	Cobble/Gravel	0.9	-		-	0.012%
2.4.0	CODDIE/ GIEVEL	0.9	-	0.9	-	0.001%
2.5	TIDAL MARSH	19533.6	17928.1	1492.3	113.2	14.816%
						11.0108
2.5	Unspecified Marsh	394.1	289.6	91.9	12.6	0.299%
2.5.11	Low Salt Marsh	2807.1	2517.1	233.3	56.7	2.129%
2.5.12	High Salt Marsh	6074.8	5543.3	505.4	26.1	4.608%
2.5.13	Fresh Marsh	5866.0	5546.3	301.9	17.8	4.449%
2.5.14	Shrub Marsh	4391.6	4031.8	359.8	_	3.331%

ESTUARY PLANS

CHAPTER FIVE

INDIVIDUAL ESTUARY MANAGEMENT PLANS

Map Sources and Methods

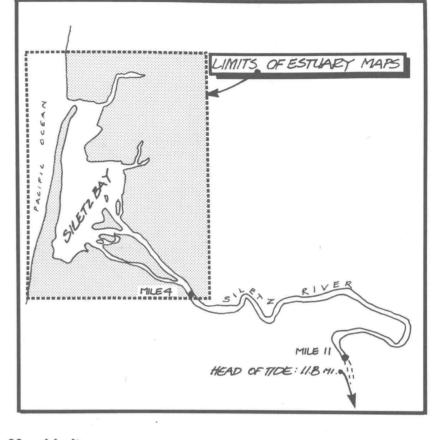
B ase maps were prepared by the Division of State Lands in 1972 and 1973 using aerial photographs from the U.S.Geological Survey (USGS EROS Data Center, NASA). These base maps were used in 1978 and 1979 by the Oregon Department of Fish and Wildlife in its mapping of estuarine habitats as part of DLCD's estuary inventory project. ODFW used aerial photography, published studies, and some onsite investigation to prepare its maps of estuarine habitats. Estuary and shoreland planning designations were compiled from local plans in 1986-87 by DLCD.

Neither the DSL base nor ODFW study cover the Columbia River estuary. The base map for this area is a 1'' = 1000' map prepared by the Columbia River Estuary Data Development Project (CREDDP) in 1983. Habitat information for the Columbia River was prepared by staff of the Columbia River Estuary Study Task Force (CREST) in 1985. CREST compiled various CREDDP studies, converted data to the ODFW habitat classification, and prepared the habitat map provided here.

Comprehensive plan and habitat maps were digitized by the Oregon Department of Energy in 1986 and 1987 using an ARC/INFO Geographic Information System. Full scale maps (usually at 1'' = 1000') were photographically reduced to fit the format of this document, and are produced at varying scales.

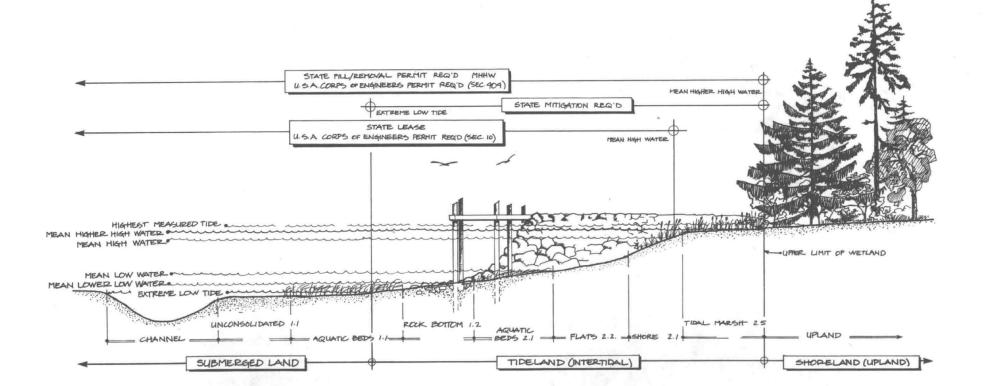
Digitized maps were reviewed by DOE and DLCD staff to identify inconsistencies and digitizing errors. The most common inconsistency was disagreement between the ODFW Habitat Map and the local plan maps in establishing the location of the estuary shoreline. DLCD staff reviewed aerial photographs, plan documents, and consulted with local planners to resolve inconsistencies.

Areal Figures


he estimates provided here are based on the habitat mapping done by ODFW and estuary plans. ODFW's mapping and estuary plans generally reflect the definition of estuary in Goal 16 and similar regulatory definitions in state and federal law. Basically, the estuary extends upland to the line of nonaquatic vegetation or to mean higher high water (mhhw). It is important to note that the mapping and estimates provided here only cover the portion of each estuary shown on the map. The maps leave out the upriver portion of many estuaries, where tidal influence extends several miles upriver. As a result, the figures presented here slightly underestimate the actual area of each estuary. Previous estimates of the size of Oregon's estuaries have used varying definitions, techniques, or data and, consequently, have arrived at different results. The most comprehensive and widely used estimates are those published by the Division of State Lands (DSL) in 1973 in its publication *Oregon Estuaries*. The estimates presented here vary from DSL's figures. The reason is that DSL calculated the landward limit of the estuary at the mean high water (mhw) level, which is the upland extent of the state's ownership interest in submerged and submersible lands. This definition leaves out extensive areas of tidal marsh which are covered by estuary plans and state and federal wetland laws. The figures presented in the estuary plan book include this larger area (i.e., up to mean higher high water or the line of nonaquatic vegetation) and are, consequently, somewhat different than DSL's figures.

Map Accuracy

hese maps are intended as a general guide to adopted estuary plans. They are most useful for overall estuarine assessment, evaluation, comparison, and as a general guide to planning and zoning of specific sites. Although great effort has been made to faithfully reflect the adopted local plans, there are some unavoidable differences between the maps shown here and the current official zoning maps. The maps should be used for site-specific interpretations on a very cautious basis for several reasons:


- Planning and zoning designations are occasionally amended. The mapping here generally reflects planning and zoning as it was acknowledged by LCDC.
- The scale of the base maps is large. Even where the original mapping is precise, a number of the mapped features are so small that the scale of mapping makes some error possible.
- 3. Media transfer of map data inevitably involves some minute variation between the base map and the digitized map. Lines on a map plotted at a scale of 1" = 1000 feet are approximately 20 feet wide on the map. Consequently, even a slightly off-center copy can result in some variation.
- 4. The base map is dated and, despite updates by ODFW and local governments, may not have kept pace with natural movement of estuarine boundaries. Estuaries are dynamic systems that have and will continue to change in response to natural processes.

The location of the estuarine shoreline on these maps is not intended to describe the limits of local (or state or federal) jurisdiction over wetlands. Wetland mapping in most local plans is necessarily generalized. Determining the exact extent of estuarine influence often requires onsite investigation. For this reason, users of these maps are encouraged to contact relevant local, state and federal agencies to determine the precise location of zoning or other regulatory boundaries.

Map Limits

The maps presented in the Estuary Plan book cover the major part of each estuary. As this map of Siletz Bay and the Siletz River shows, most but not all of the estuary is shown on the map. Estuary and shoreland plans extend upriver to the head of tide, which in the case of the Siletz River is some 14 river miles upstream of the upper limits of the mapping presented here.

Columbia Necanicur

Nehalem E Tillamook I Netarts Ba Sand Lake Nestucca I

Salmon Riv Siletz Bay Yaquina Bay Alsea Bay

Siuslaw Riv

Umpqua R

Coos Bay Coquille Ri

Rogue Riv Chetco Riv

Estuary Boundaries

A great variety of terms are used to define and differentiate various parts of the estuary from one another. The terms presented on this chart are important to understanding the location of various habitats as well as the jurisdiction of various agencies charged with wetland planning and regulation.

ESTUARY PLAN MAPS

iver	9
River 5	2
ay	6
ay6	0
	4
	8
ay7	2
er	6
	0
y	4
	8
er9	2
ver/Smith River9	6
	0
rer	
r	2
er	

INDIVIDUAL ESTUARIES

Only inclus	des shorelands on the Oregon sin	Area In Acres	<pre>% Shore</pre>	<pre>% Class</pre>	MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom	Rock Bottom	Aquatic Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
THESE CODE	Done (LDF)	In Acres					1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
URBAN		3263.8	27.7		TOTAL	80811.8	47914.8	47864.1	50.7	0.0	32897.0	86.9	17539.5	0.0	3764.3	11506.
C2	Highway Commercial	162.6	1.4	5.0	101111	0001100										
C3	Marine Commercial	29.3	0.2	0.9												
C4	Tourist Commercial	63.5	0.5	1.9	NATURAL	16557.7	970.1	970.1	0.0	0.0	15587.6	0.0	1870.2	0.0	3085.3	10632.
EB	East Bank Skipanon	219.5	1.9	6.7												
GC	General Commercial	34.0	0.3	1.0	A4 8	354.3	203.0	203.0	-	-	151.3	-	151.3	-	-	-
HI	Heavy Industrial	11.9	0.1	0.4	AN 8	623.0	31.7	31.7	-	-	591.3	-	50.3	-	-	541.
I-1	Light Industrial	62.8	0.5	1.9	AN 9	248.5	0.0	-	-	-	248.5	-	-	-	-	248.
1-2	General Industrial	95.5	0.8	2.9	AN 10	9566.8	51.6	51.6	-	-	9515.2	-	365.0	0 5	-	9150.
I-3	Water Dependent Industrial	216.0	1.8	6.6	AN 11	3235.8	0.0	-		-	3235.8	-	-	-	3085.3	150.
1-4	Airport Development	610.8	5.2	18.7	AN 12	331.1	0.0	-	-	-	331.1	-	7.6	-	-	323.
MI	Marine Industrial	20.3	0.2	0.6	WA3 3	200.2	0.0	-	—	-	200.2	-	144.3	-	-	55.
OPR	Open Space, Parks & Rec.	44.4	0.4	1.4	WA3 8	1993.1	683.8	683.8	-	-	1309.3	-	1151.7	-	-	157.
R-H	High Density Residential	30.8	0.3	0.9	WA4 4	4.9	0.0	_	-	-	4.9	-	-	-	-	4.
R10	Low Density Residential	298.3	2.5	9.1												
R10/GM	Low Density Residential	156.4	1.3	4.8												
	Recreation Commercial	55.6	0.5	1.7	CONSERVATION	61283.8	44051.1	44006.7	44.4	0.0	17232.7	86.9	15609.2	0.0	679.0	857.
RC	Rural Development	248.7	2.1	7.6												
RD		165.7	1.4	5.1	A2 6	22.6	22.6	22.6	_	-	0.0	-	-	-	-	-
RM	Recreation Management	37.8	0.3	1.2	A3 0	6.8	0.0	_	-	-	6.8	6.8	-	-	-	-
RM1	Recreation Management	212.3	1.8	6.5	A3 5	456.9	406.0	380.3	25.7	-	50.9	-	50.9	-	-	-
S1	Marine Industrial	234.9	2.0	7.2	A3 6	1796.7	1658.1	1639.4	18.7	-	138.6	1.5	117.2	-	-	19.
S2	General Development	24.8	0.2	0.8	A3 8	89.6	34.3	34.3	_	_	55.3	-	55.3	-	-	-
S3	Limited Development	88.4	0.8	2.7	AC1 10	244.6	0.0	-	-	-	244.6	-	-	-	-	244.
S5	Natural		0.0	0.2	AC2 0	24499.2	21210.0	21210.0	-	_	3289.2	-	3152.1	-	137.1	-
SC	Shorelands Conservation	5.6	1.1	4.1	AC2 8	2149.5	699.9	699.9	-	-	1449.6	55.0	1075.9	-	-	318.
TPM	Tongue Point Mediated	133.9	1 • 1	4.1	AC2 10	26965.1	16314.0	16314.0	-	-	10651.1	-	10406.0	-	-	245.
					AC2 12	4783.1	3506.0	3506.0	-	-	1277.1	-	732.3	-	541.9	
		0.400 0	70.0		HAC 2	58.8	58.8	58.8	_	-	0.0	-	-	-	-	-
RURAL		8498.3	72.3		WA2 3	182.6	141.4	141.4	_	_	41.2	23.6	17.6	-	-	-
			2.0	2.0	WA2 4	28.3	0.0	-	_	_	28.3	-	1.9		-	26.
AF-20	Agriculture Forestry 20	237.9	2.0	2.8	WELL 12	20.3	0.0				2005					
CS	Conservation Shoreland	2002.8	17.0	23.6												
EFU	Exclusive Farm Use	3951.3	33.6	46.5	DISTRICT ODMENTS	2970.3	2893.6	2887.3	6.3	0.0	76.7	0.0	60.1	0.0	0.0	16.
F-38	Forestry-38	82.5	0.7	1.0	DEVELOPMENT	2970.3	2093.0	2007.3	0.3	0.0	/0.7	0.0	00.1			101
F80	Forestry 80	127.1	1.1	1.5	14 E	85.1	02 6	77.3	6.3	-	1.5	_	1.5	_	_	
GC	General Commercial	0.7	0.0	0.0	A1 5		83.6	98.5	-	_	16.8	_	15.2		_	1.
GI	General Industrial	37.0	0.3	0.4	A1 6	115.3	98.5		-	_	0.0		13.2	_	_	
I-1	Light Industrial	17.6	0.1	0.2	A1 7	36.5	36.5	36.5	-	-	14.1	_	14.1		_	
I-2	General Industrial	22.0	0.2	0.3	A1 8	152.3	138.2	138.2	-	-		_	14+1	_	_	_
MI	Marine Industrial	64.2	0.5	0.8	AD 0	1.3	1.3	1.3	-	-	0.0	-	-	-	_	_
NS	Natural Shorelands	1321.9	11.2	15.6	AC 1	2267.8	2267.8	2267.8	-	-	0.0	_	42.2	_	_	-
OPR	Open Space Park Recreation	102.5	0.9	1.2	AS 8	72.6	59.3	59.3	-	-	13.3	-	13.3		_	_
RA1	Residential Agriculture 1	266.2	2.3	3.1	AD 10	2.3	0.0	-	-	-	2.3	-	2.3		-	-
RA2	Residential Agriculture 2	43.1	0.4	0.5	HAD 2	44.0	30.3	30.3	-	-	13.7	-	13.7		-	-
RA5	Residential Agriculture 5	181.5	1.5	2.1	WA1 3	23.5	23.5	23.5	-	—	0.0	-	-	-	_	-
RM	Recreation Management	4.9	0.0	0.1	WA1 4	169.6	154.6	154.6	-	-	15.0	-	-	-	-	15.
SFR1	Single Family Residential	35.1	0.3	0.4												

Fort Stevens and various sloughs account for approximately 313 acres. These areas were not included in this analysis because they were not coded as shoreland on the base map. The other shoreland report includes these areas.

.....

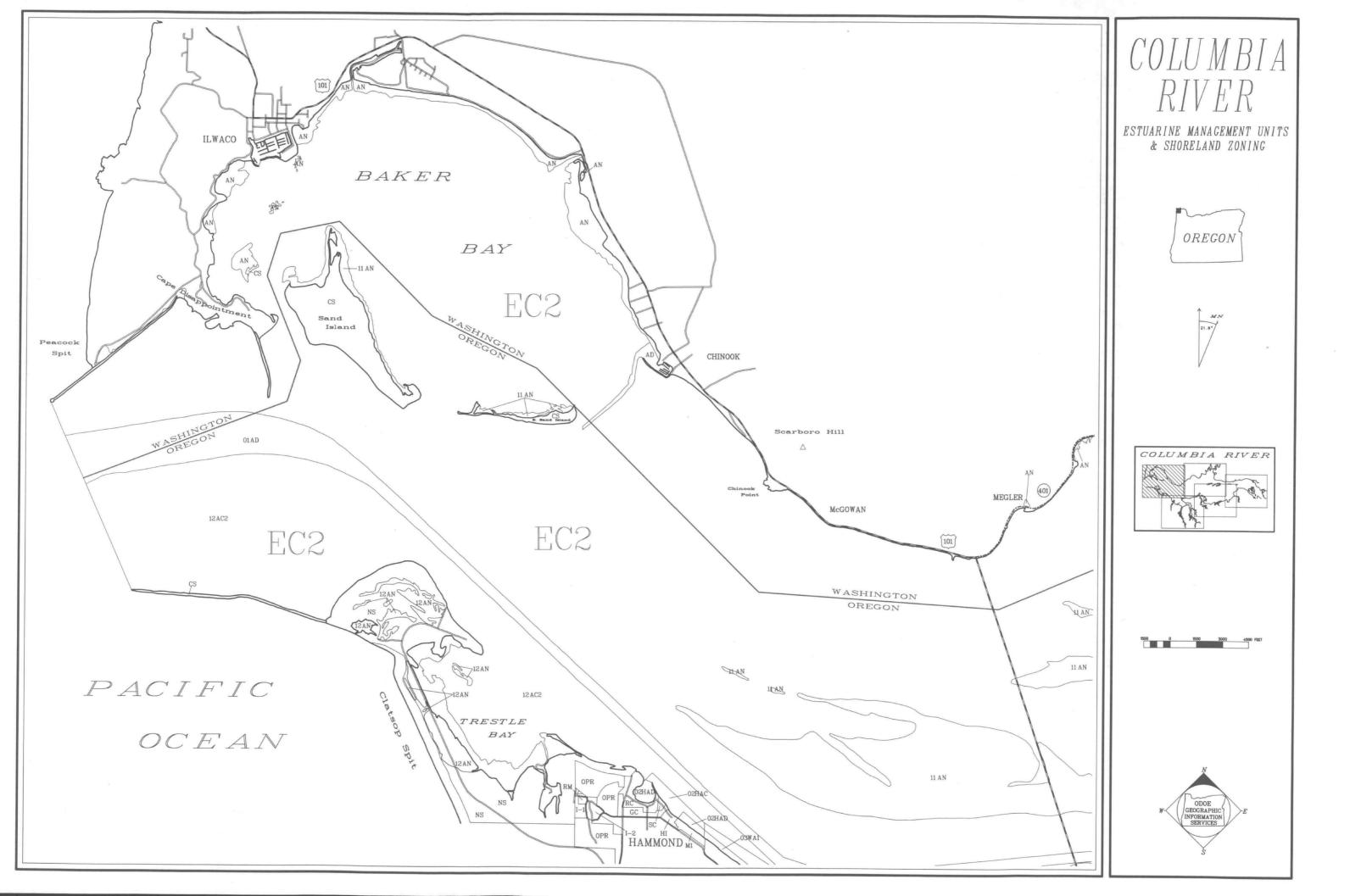
÷.

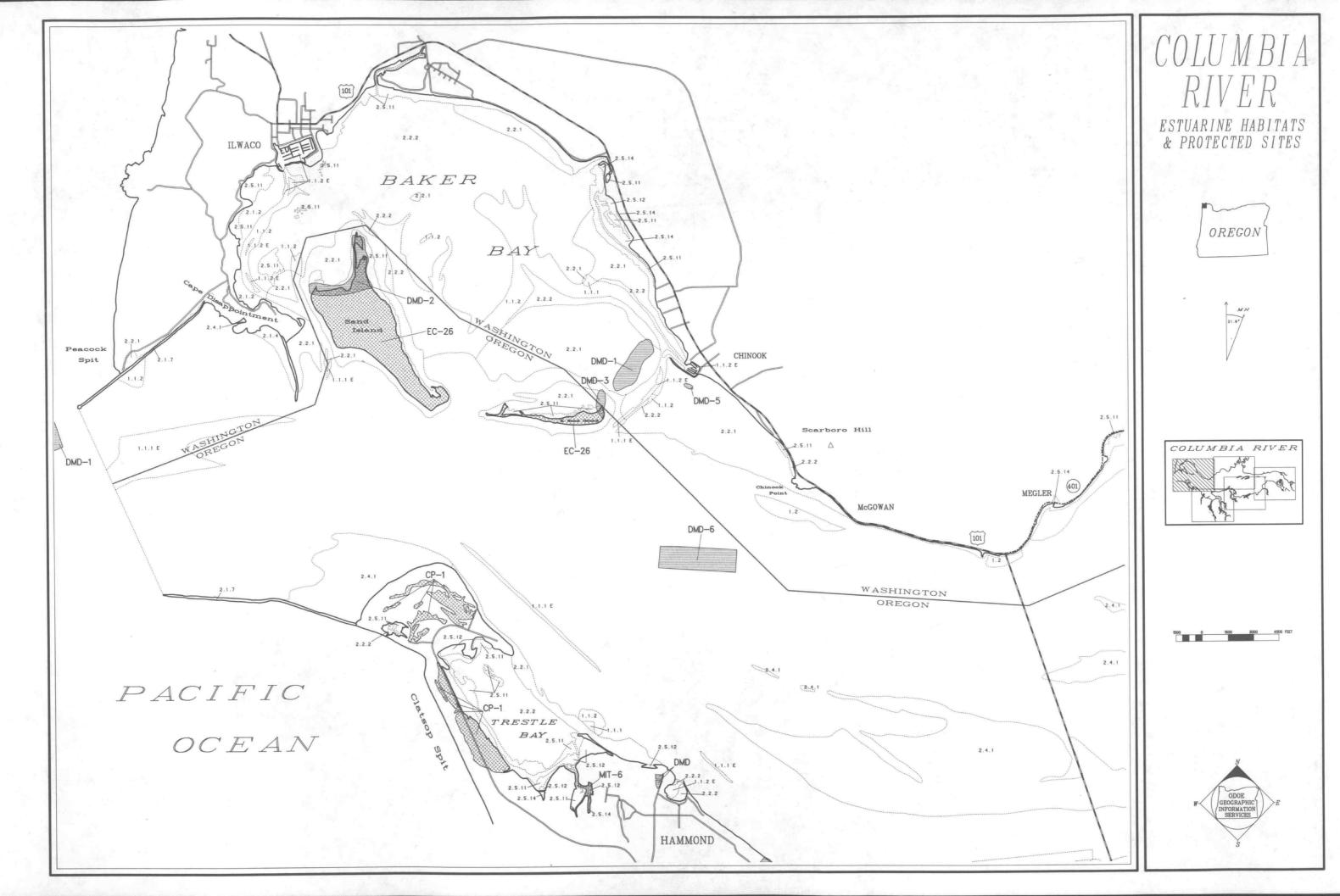
39

		AREA	PERCENT	ACRES	ACRES	ACRES
HABITAT (CLASS/	IN ACRES	OF	IN	IN	IN
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABI	TATS	80811.8	100.000%	16557.7	61283.8	2970.3
UNCONSOL	IDATED BOTTOM					
1.1	Unspecified	93.8	0.116%		93.8	-
1.1.1	Sand	44023.2	54.476%	764.8	40688.9	2569.5
1.1.2	Sand/Mud (Mixed)	3747.1	4.637%	205.3	3224.0	317.8
ROCK BOT	IOM					
1.2	Unspecified	50.7	0.063%	-	44.4	6.3
SHORE						
2.1	Shore	23.6	0.029%	-	23.6	-
2.1.2	Sand/Mud (Mixed)	55.0	0.068%	-	55.0	-
2.1.7	Boulder	8.3	0.010%	-	8.3	-
FLAT						
2.2	Flat	74.5	0.092%	8.2	66.3	-
2.2.1	Sand	7135.3	8.830%	331.4	6800.1	3.8
2.2.2	Sand/Mud (Mixed)	10248.7	12.682%	1530.6	8661.8	56.3
2.2.3	Mud	81.0	0.100%	-	81.0	-
BEACH/BAH	R					
2.4.1	Sand	3764.3	4.658%	3085.3	679.0	-
2.4.6	Cobble/Gravel		0.000%	-	-	-
TIDAL MAN	RSH					
2.5.11	Low Salt Marsh	989.9	1.225%	865.4	107.9	16.6
2.5.12	High Salt Marsh	498.4	0.617%	345.7	152.7	-
2.5.13	Fresh Marsh	5727.9	7.088%	5482.1	245.8	-
2.5.14	Shrub Marsh	4290.1	5.309%	3938.9	351.2	-

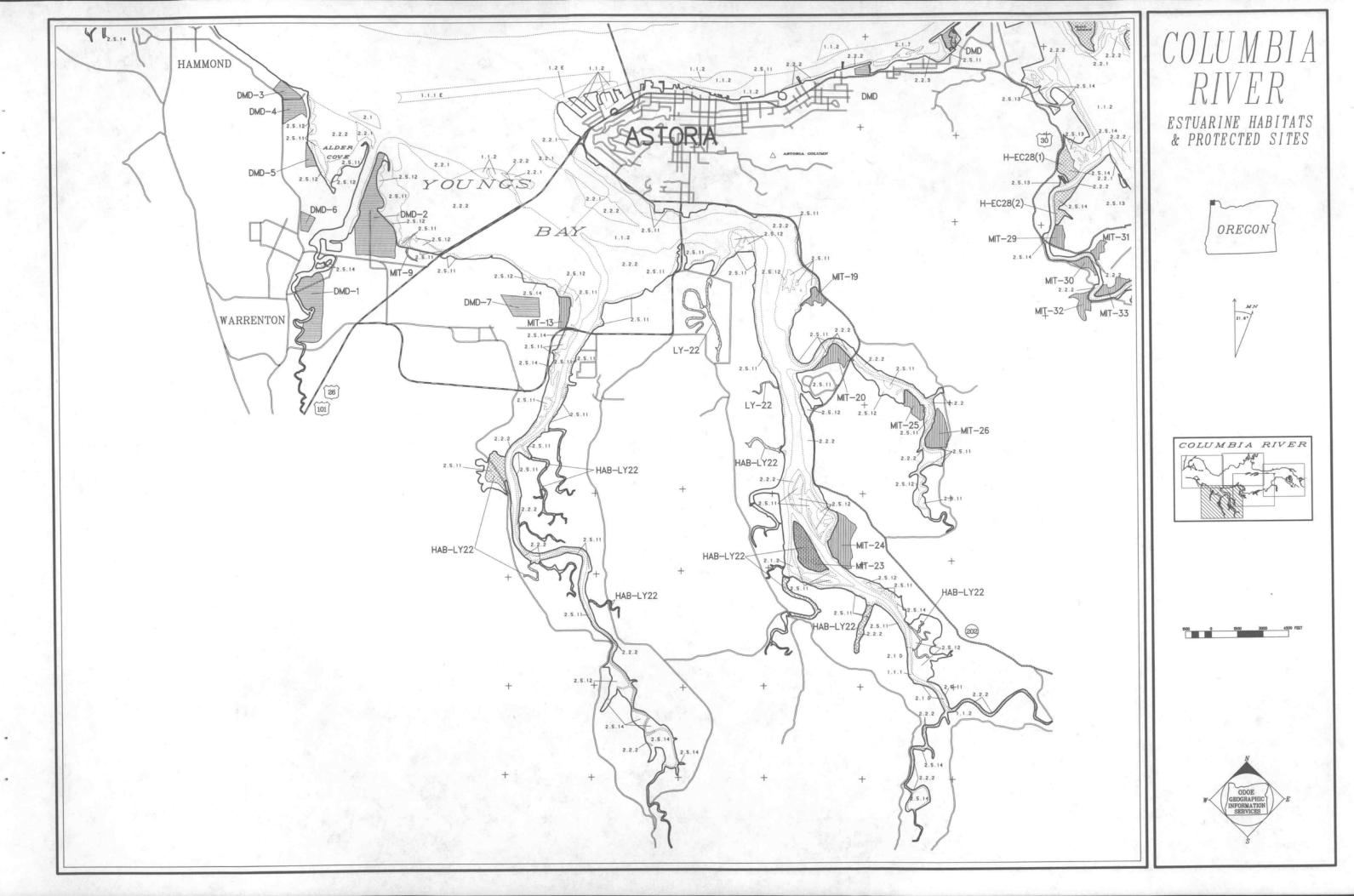
SPECIAL SHORELAND SITES

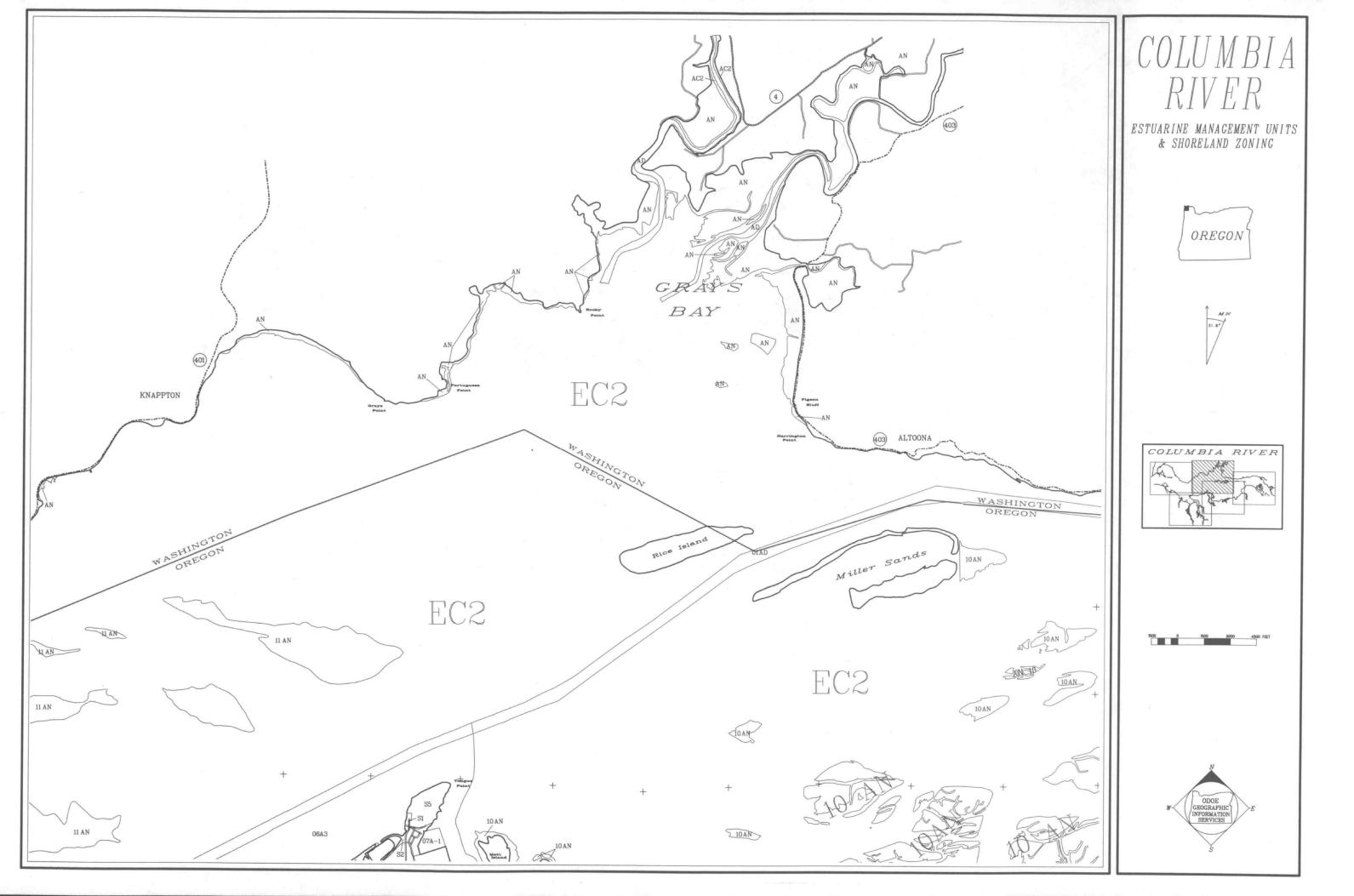
CODE	NAME/Comments		Size	Zone
			(Acres)	
DREDGED MAT	TERIAL DISPOSAL SITES	Capacity		
		(Cubic Yards)		
DMD 11E	ESTUARY	550,000		ED
	5-YEAR CAPACITY			
DMD 13	SMALL BOAT BASIN	46,000	3.0	C2
DMD 14	ENTRANCE CHANNEL	52,000	3.5	C2
DMD 25S	NE KING AVE	1,850,000	115.0	WDR
DMD 33	LEWIS & CLARK RIVER	210,000	13.0	
	(For maintenance dredgin		areas.)	
DMD 46	SVENSEN ISLAND	1,100,000	144.0	
DMD 78	BRADWOOD	625,000	39.0	
PRIORITY II	SITES			
DMD 19S	FORT STEVENS HWY 1	306,000	19.0	
MD 20AS	WARRENTON LUMBER	56,000	3.5	
MD 20S	SEWAGE LAGOON	516,000	32.0	
MD 21S	FORT STEVENS HWY 2	290,000	18.0	
MD 22S	NE 1ST ST	306,000	19.0	
DMD 23S	(Unnamed Site)	2,400,000	150.0	
MD 24S	(Unnamed Site)	1,000,000	67.0	1
MD 26S	(Unnamed Site)	209,000	13.0	
MD 27S	(Unnamed Site)	145,000	9.0	
DMD 44	JOHN DAY RIVER (RM 39)	720,000	45.0	
MD 90	WESTPORT (RM 43)	112,000	70.0	
IITIGATION	AND RESTORATION SITES			
AIT 13	ASTORIA AIRPORT		18.0	
	Construct new dike uplan	d of old dike;		
	Remove old dike.			
AIT 41	SVENSEN ISLAND		149.0	EFU-
	Reconstruct cross dike;	breach existing		
	dike at 200 foot interva	ls.		
IIT 6	SWASH LAKE		40.0	CS
	Excavate dunes and open	tidal channels		
	to enlarge marsh.			
ПТ 9	HOLBROOK SLOUGH		37.0	13
	Breach dike after constru	ucting new dike		

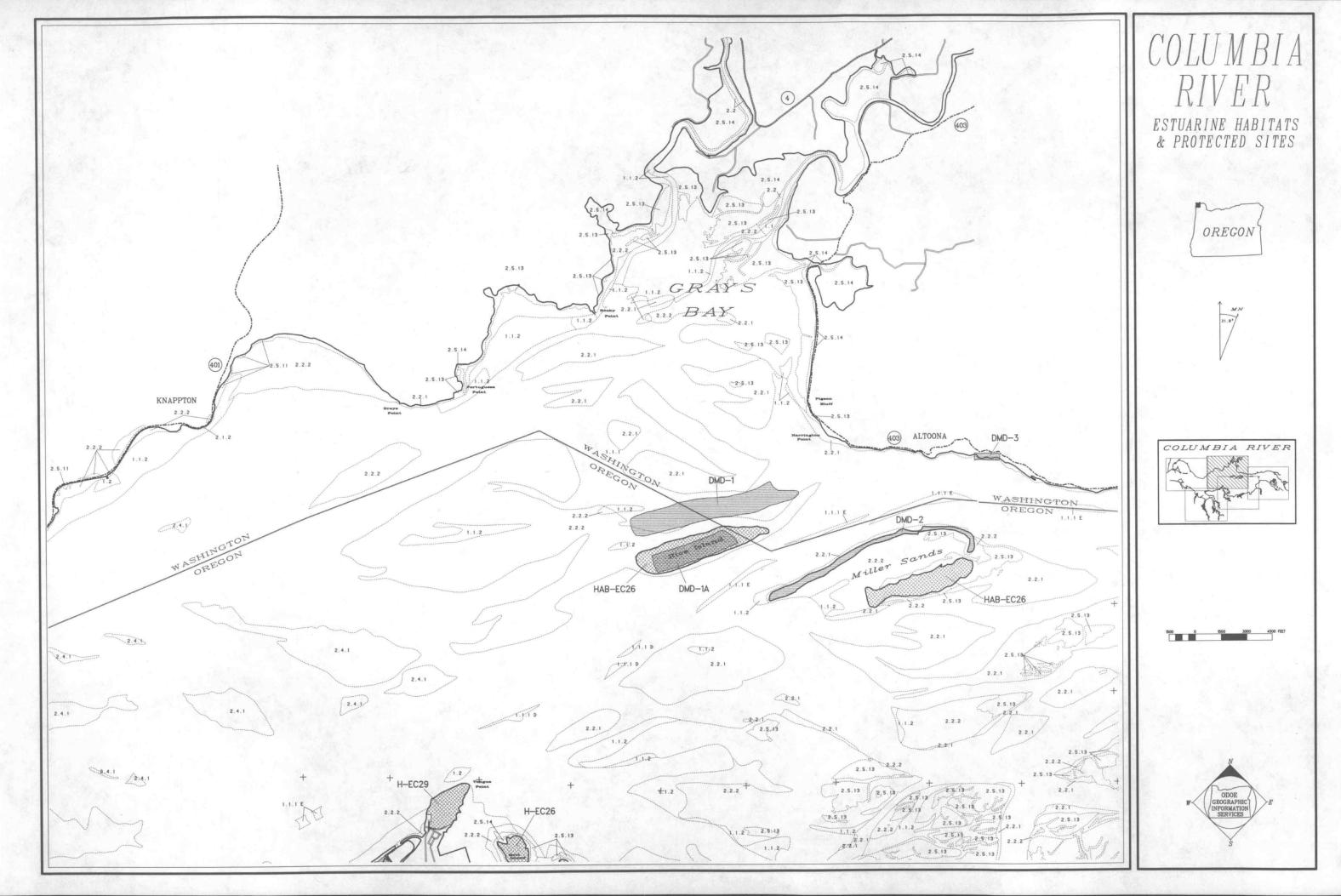

Breach dike after constructing new dike adjacent to railroad bed.

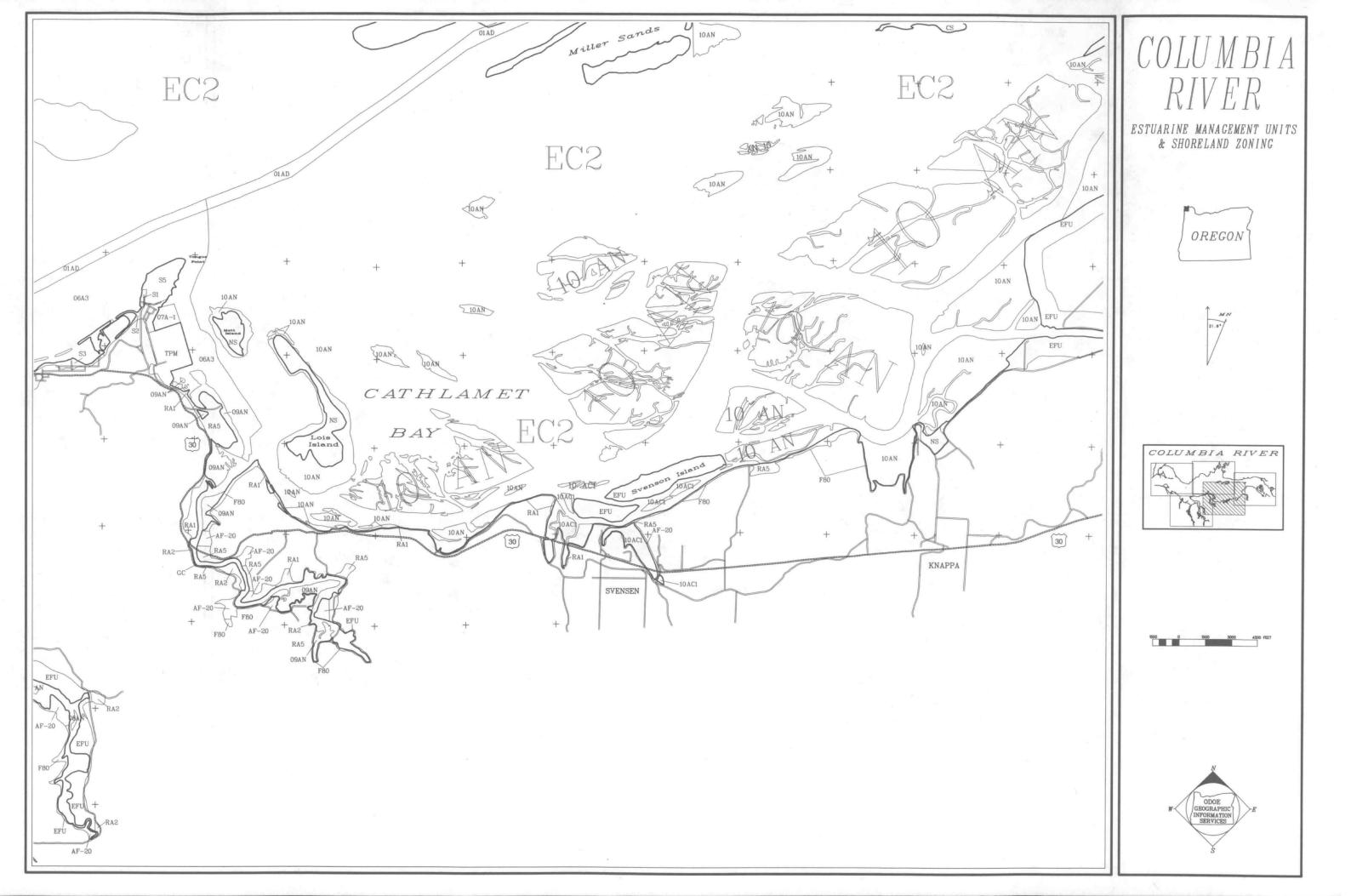

1.0

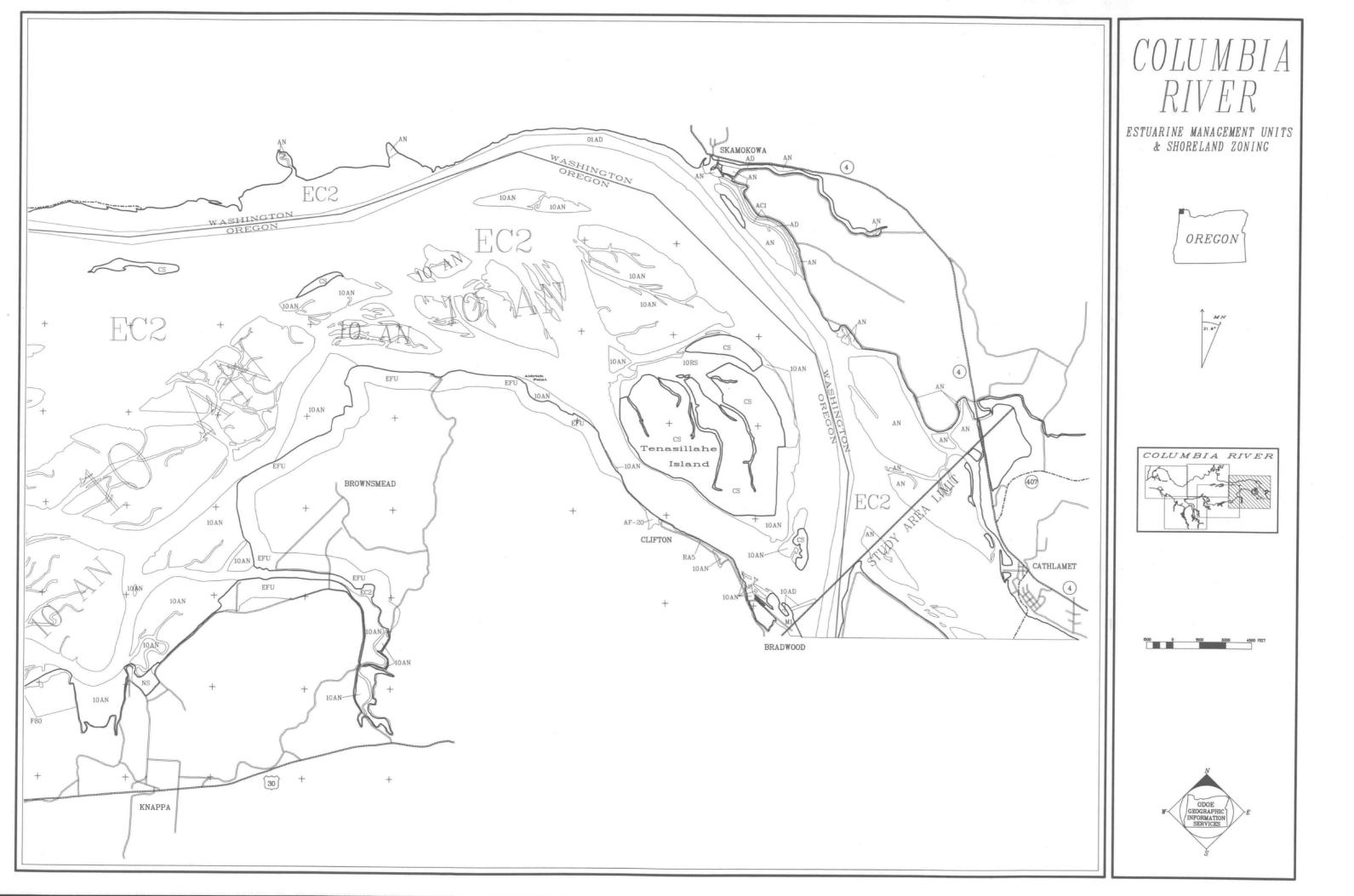
WATER-DEPENDENT DEVELOPMENT SITES

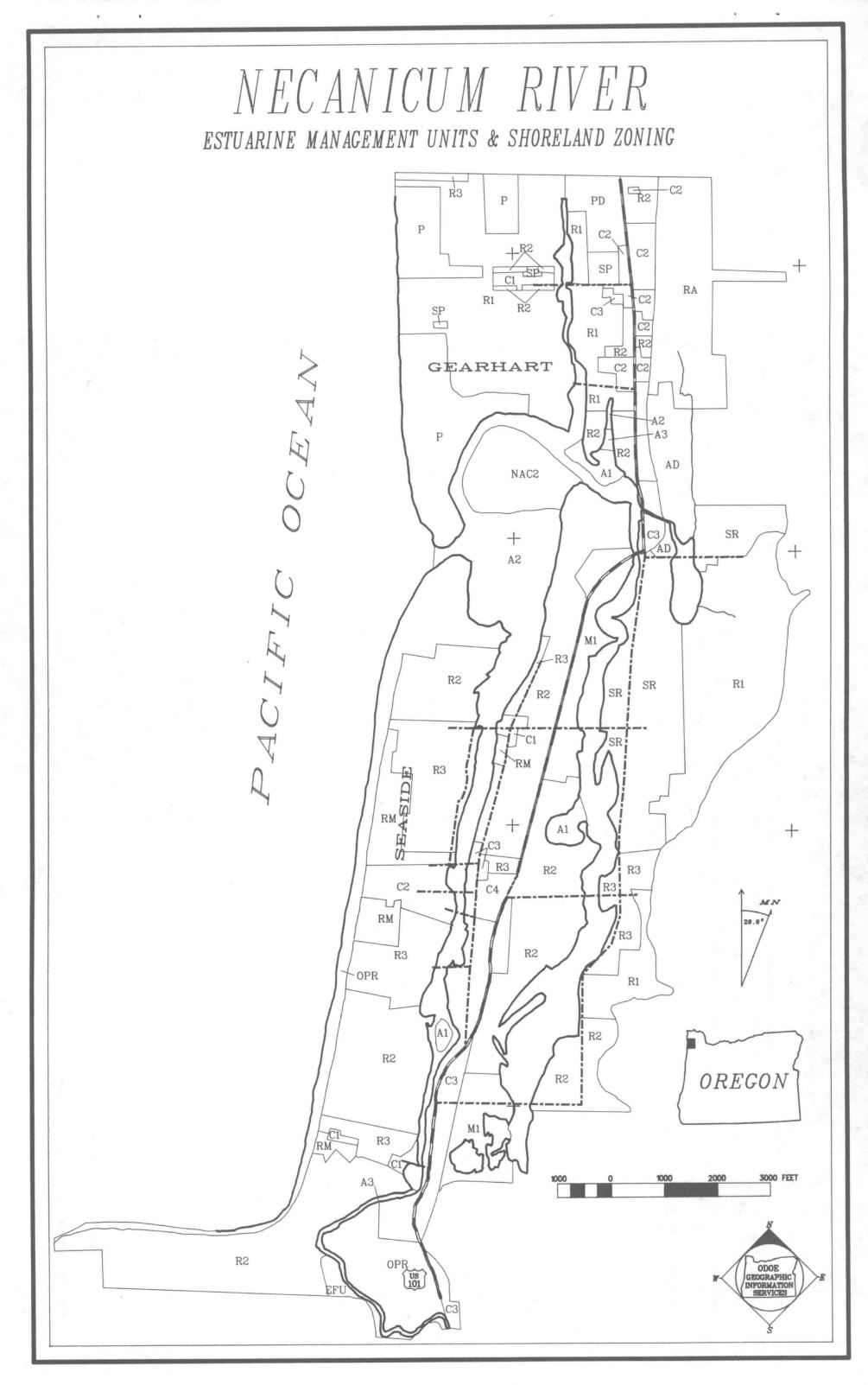

WI	DD A1	SOUTH ASTORIA	8.0	S1
		Two parcels fronting Young's Bay.		
		Access to Hwy 202.		
WI	DD A2	PORT OF ASTORIA	58.5	S1
		Size does not include 31.5 acres of water.		
		Access to rail, main channel and US 30.		
		About half vacant.		
WI	DD A3	ASTORIA PLYWOOD CORP	6.0	
		Adjacent to water-dependent mill.		
W	DD A4	EAST MOORING BASIN	12.0	S1
		Adjacent to basin. Rail, channel & highway a	access.	
W	DD A5	TONGUE POINT	143.0	TPM
		70 acres of developable water area.		
W	DD H1	HAMMOND BOAT BASIN	49.5	C2
		2.5 acres are developed. Remainder		
		reserved for boat basin related development.		
Ŵ	DD H2	HAMMOND	11.0	11
		4 acres developed. Site reserved for marine		
		industries and supporting uses.		
W	DD W1	EAST BANK SKIPANON RIVER	172.0	EB
		Reserved for large scale water dependent use		
W	DD W2	WEST BANK SKIPANON RIVER	109.0	13
		97 acres existing mill site. 12.2 acres und		
W	DD W3	TANSY POINT	109.5	13
		Reserved for large water-dependent use.		











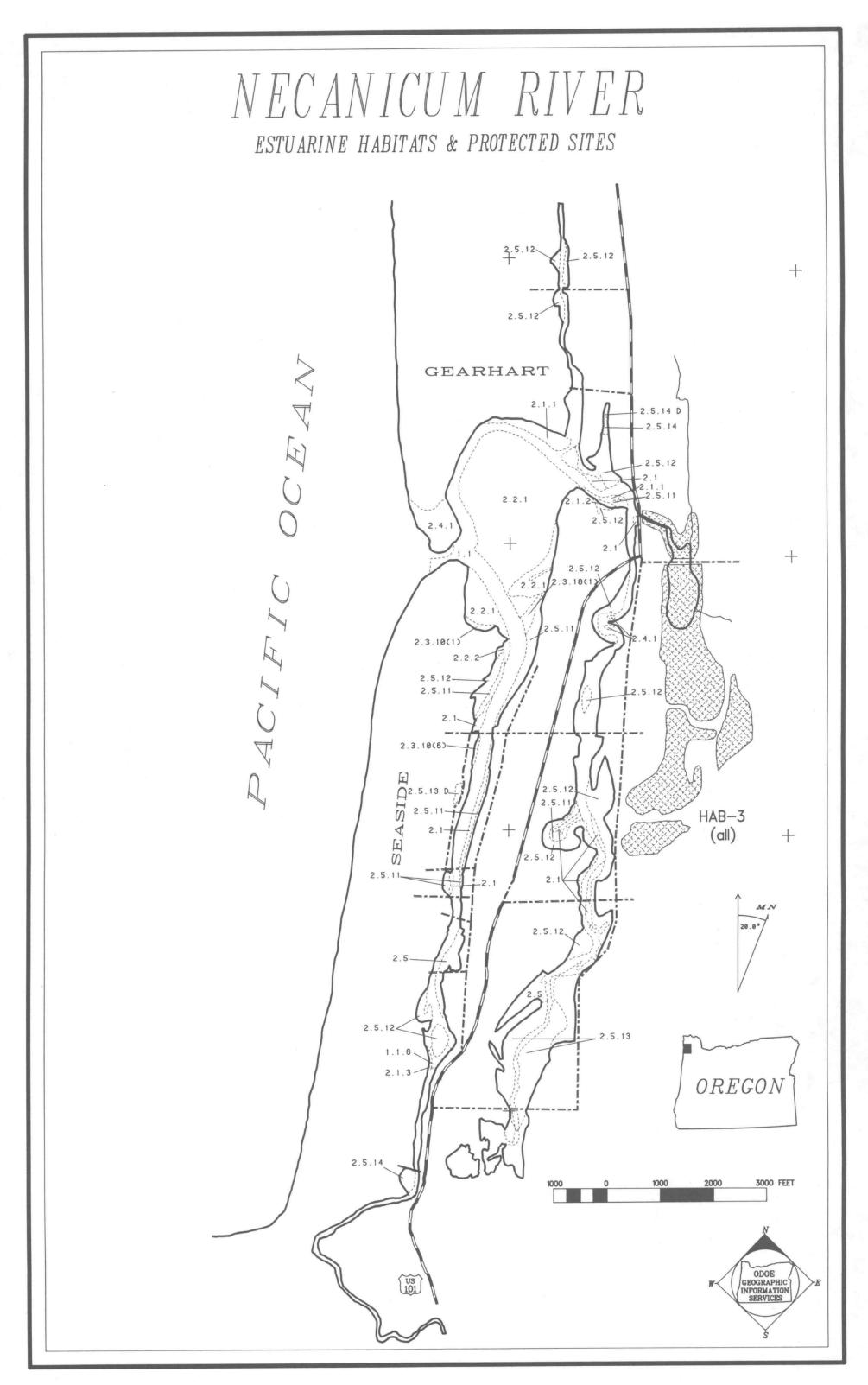
Total Shoreland Area: 2414.4 acres

HABITAT	CLASS	BY	MANAGEMENT	UNIT
	(Area	in	Acres)	

		Area		
CLASS/Code	Zone	In Acres	% Shore	<pre>% Class</pre>
URBAN		2410.7	99.8	
10				
AD	Airport Development	46.9	1.9	1.9
C1	Neighborhood Commercial	16.5	0.7	0.7
C2	Resort Commercial	67.3	2.8	2.8
C3	General Commercial	107.3	4.4	4.5
C4	Central Commercial	15.7	0.7	0.7
EFU	Exclusive Farm Use	6.6	0.3	0.3
M1	Industrial	101.9	4.2	4.2
OPR	Open Space, Parks &			
	Recreation	179.7	7.4	7.5
P	Parks and Open Space	150.8	6.2	6.3
PD	Recreation Commercial			
	Planned Development	28.7	1.2	1.2
R1	Residential Low Density	483.6	20.0	20.1
R2	Residential Medium Density	652.4	27.0	27.1
R3	Residential High Density	189.2	7.8	7.8
RA	Rural Agriculture	117.9	4.9	4.9
RM	Resort Motel	57.5	2.4	2.4
SP	Semi-Public	10.1	0.4	0.4
SR	Suburban Residential	178.6	7.4	7.4
RURAL		3.7	0.2	
EFU	Exclusive Farm Use	3.7	0.2	100.0

MANAGEMENT CLASS AND AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom 1.1	Rock Bottom	Aquatic Bed 1.3	INTERTIDAL	Shore 2.1	Flat 2.2	Aquatic Bed 2.3	Beach/ Bar 2.4	Tidal Marsh 2.5
		1.	1.1	1.2	1.5	2.	2.1	2.2	2.3	2.0%	2.5
TOTAL	450.8	179.1	179.1	0.0	0.0	271.7	16.4	117.8	4.1	1.4	132.0
NATURAL											
A 1	19.3	0.0	-	-	-	19.3	1.0	-	-	-	18.3
CONSERVATION	431.5	179.1	179.1	-	-	252.4	15.4	117.8	4.1	1.4	113.7
A 2	360.5	168.8	168.8	-	-	191.7	15.4	58.8	4.1	1.4	112.0
A 3	12.0	10.3	10.3	-	-	1.7	-	-	-	-	1.7
NAC 2	59.0	0.0	-	-	-	59.0	-	59.0	-	-	-

		AREA	PERCENT	ACRES	ACRES
HABITAT CI	ASS/	IN ACRES	OF	IN	IN
Code	Subclass		ESTUARY	EN	EC
ALL HABITA	TS	450.8	100.0%	19.3	431.5
UNCONSOLT	ATED BOTTOM				
1.1	Unspecified Type	177.6	39.4%	0.0	177.6
1.1.6	Cobble/Gravel	1.5	0.3%	0.0	1.5
SHORE					
2.1	Unspecified Type	13.2	2.9%	1.0	12.2
2.1.1	Sand	2.2	0.5%	0.0	2.2
2.1.2	Sand/Mud (Mixed)	0.5	0.1%	0.0	0.5
2.1.3	Mud	0.5	0.1%	0.0	0.5
FLAT					
2.2.1	Sand	116.4	25.8%	0.0	116.4
2.2.2	Sand/Mud (Mixed)	1.4	0.3%	0.0	1.4
AQUATIC BE	D				
2.3.10(1)	Algae on Sand	3.4	0.8%	0.0	3.4
2.3.10(6)	<pre>on Cobble/Gravel</pre>	0.7	0.2%	0.0	0.7
BEACH/BAR					
2.4.1	Sand	1.4	0.3%	0.0	1.4
TIDAL MARS	н				
2.5.11	Low Salt Marsh	16.5	3.78	2.6	13.9
2.5.12	High Salt Marsh	77.9	17.3%	15.7	62-2
2.5.13	Fresh Marsh	34.6	7.78	0.0	34.6
2.5.14	Shrub Marsh	3.0	0.7%	0.0	3.0


CODE NAME/Comments SIGNIFICANT HABITAT SITE HAB 3 STANLEY LAKE Wetland waterfowl habitat; coho spawning area; warmwater fish.

SPECIAL SHORELAND SITES

Size	Zone

67.0

A3

Total Shor	eland Area: 3016.2 acres				MANAGEMENT			Uncon- solida-	Rock	Aquatic					Dearb (m: 3_ 3
		Area			CLASS	Total	SUBTIDAL	ted	Bottom	Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
CLASS/Code	Zone	In Acres	% Shore	% Class	AND UNIT	Area		Bottom						200	2022	
							1.	, 1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
URBAN		155.3	5.2		TOTAL	2749.0	1000.9	991.0	0.0	9.9	1748.1	157 5	400 7	644.0		504 6
					TOTAL	214310	100019	331.0	0.0	3.5	1/40+1	157.5	400.7	641.9	23.4	524.6
С	Commercial	13.8	0.5	8.9	NATURAL	1610.6	18.1	11.8	0.0	6.3	1592.5	117.3	385.9	627.1	0.0	462.2
GC	General Commercial	8.6	0.3	5.6												
IND	Water Related Industrial	25.7	0.9	16.5	EN 5	153.7	11.4	5.1	-	6.3	142.3	3.1	101.9	37.3	-	-
M-R	Marine Residential	20.6	0.7	13.3	EN 7	940.9	0.0	-	-	-	940.9	82.9	284.0	512.1	-	61.9
R-L	Low Density Residential	24.0	0.8	15.5	EN 8	263.9	0.0	-	-	-	263.9	-	-	72.9	-	191.0
				1. (b. 1040) - 1707	EN 9	192.7	0.0	-	-	-	192.7	-	-	-	-	192.7
R1	Residential Type 1	30.0	1.0	19.3	EN 11	5.3	0.0	-	-	-	5.3	2.7	-	1.6	-	1.0
R2	Residential Type 2	10.9	0.4	7.0	EN 14	19.5	6.2	6.2	-	-	13.3	8.8	-	3.2	-	1.3
R3	High Density Urban Res	10.0	0.3	6.4	EN 15	8.9	0.0	-	-	-	8.9	8.9	-	-	-	-
RT	Residential - Trailer	2.8	0.1	1.8	EN 17	15.1	0.0	-	-	-	15.1	10.6	-	-	-	4.5
WRC	Water-Related Commercial	8.9	0.3	5.7	EN 18	8.7	0.0	-	-	-	8.7	-		-	-	8.7
					EN 19	1.9	0.5	0.5	-	-	1.4	0.3	-	-	-	1.1
RURAL		2860.9	94.8													
					CONSERVATION	951.7	837.4	833.8	0.0	3.6	114.3	32.2	14.0	8.4	23.4	36.3
С	Commercial	0.3	0.0	0.0										0.4	23.3	30:3
C1	Neighborhood Commercial	1.7	0.1	0.1	EC1 2	13.9	0.0	-	-	-	13.9	-	11.9	1.2	-	0.8
F	Forest	83.5	2.8	2.9	BC1 4	13.6	0.0	-	-	-	13.6	-	_	-	_	13.6
F1	Farm (Exclusive Farm Use)	1329.9	44.1	46.5	EC1 6	1.0	0.0	-	-	_	1.0	-	-	-	-	1.0
LM	Light Industrial	9.0	0.3	0.3	EC1 23	5.6	3.6	-	-	3.6	2.0	-	-	2.0	-	_
					EC1 25	2.2	0.0	-	-	-	2.2	-	-	-	-	2.2
M-R	Marine Residential	0.5	0.0	0.0	EC1 26	14.3	0.0	-	-	-	14.3	-	-	1.6	-	12.7
RM	Recreation Management	1126.0	37.3	39.4	EC1 27	216.2	199.0	199.0	-	-	17.2	11.9	2.1	-	-	3.2
RR	Rural Residential	253.3	8.4	8.9	EC2 1	42.3	16.9	16.9	-	-	25.4	4.9	-	2.2	18.3	-
SFW20	Small Farm or Woodlot - 20	11.1	0.4	0.4	EC2 22	642.6	617.9	617.9	-	-	24.7	15.4	-	1.4	5.1	2.8
WDD	Water Dependent Development	45.4	1.5	1.6												
					DEVELOPMENT	186.7	145.4	145.4	0.0	0.0	41.3	8.0	0.8	6.4	0.0	26.1
											1110	0.0	0.0	0.4	0.0	20.1
					ED 1	1.4	1.4	1.4	-	-	-	-	-	-	-	-
					ED 3	4.1	2.4	2.4	-	-	1.7	1.0	-	0.7	_ h	-
					ED 10	13.0	3.4	3.4	-	-	9.6	6.6	-	2.0	-	1.0
					BD 12	5.7	0.0	-	-	-	5.7	-	-	3.7	-	2.0
					ED 13	24.1	0.2	0.2	-	-	23.9	-	0.8	_	-	23.1
					ED 16	6.8	6.8	6.8	-	-	0.0	-	-	-	-	-
					ED 21	131.6	131.2	131.2	-	-	0.4	0.4	-	-	-	-

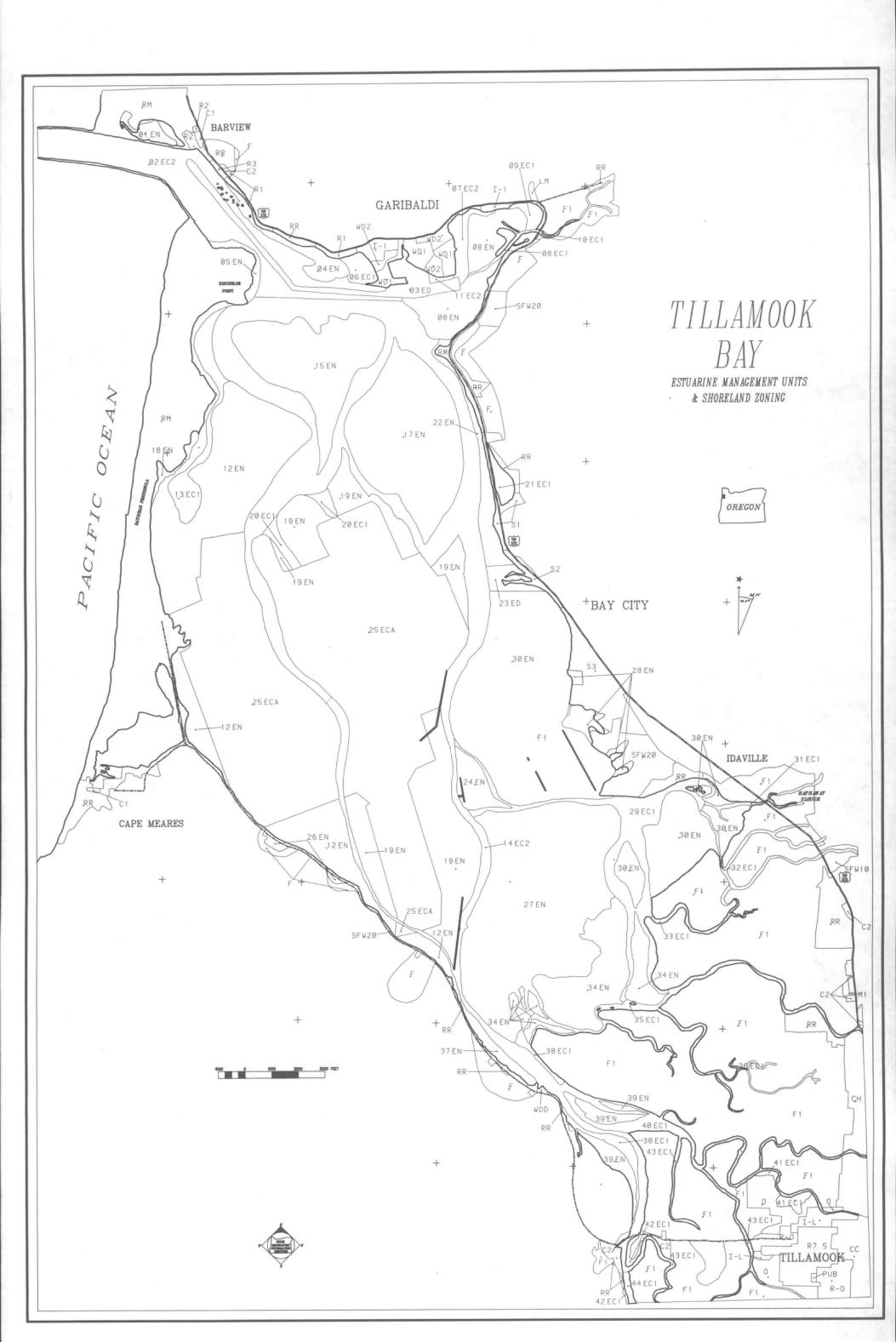
DEVELOPMENT	186.7	145.4	145.4	0.0	0.0	41.3
ED 1	1.4	1.4	1.4	_	-	-
ED 3	4.1	2.4	2.4	-	-	1.7
ED 10	13.0	3.4	3.4	_	-	9.6
ED 12	5.7	0.0	-	-	-	5.7
ED 13	24.1	0.2	0.2	-	-	23.9
ED 16	6.8	6.8	6.8	-	-	0.0
ED 21	131.6	131.2	131.2	-	-	0.4



HABITAT CI	LASS/	AREA IN ACRES	PERCENT OF	ACRES IN	ACRES	ACRES
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABITZ	ATS	2749.0	100.0%	1610.6	951.7	186.7
UNCONSOLII	DATED BOTTOM					
1.1	Unspecified Type	991.0	36.0%	11.8	833.8	145.4
AQUATIC BE	3D					
1.3.9	Seagrass	9.9	0.4%	6.3	3.6	0.0
SHORE						
2.1	Unspecified Type	12.5	0.5%	0.3	12.2	0.0
2.1.1	Sand	77.1	2.8%	77.1	0.0	0.0
2.1.2	Sand/Mud (Mixed)	35.4	1.3%	32.6	2.8	0.0
2.1.3	Mud	18.5	0.7%	5.8	6.1	6.6
2.1.5	Wood Debris/Organic	7.4	0.3%	0.8	6.2	0.4
2.1.6	Cobble/Gravel	0.7	0.0%	0.7	0.0	0.0
2.1.7	Boulder	5.9	0.2%	0.0	4.9	1.0
FLAT	8					
2.2	Unspecified Type	2.9	0.18	0.0	2.1	0.8
2.2.1	Sand	317.0	11.5%	305.1	11.9	0.0
2.2.2	Sand/Mud (Mixed)	76.0	2.8%	76.0	0.0	0.0
2.2.6	Cobble/Gravel	4.8	0.2%	4.8	0.0	0.0
AQUATIC BE	D					
2.3.9	Seagrass	223.3	8.1%	217.4	1.4	4.5
2.3.9(1)	Seagrass on Sand	1.2	0.0%	1.2	0.0	0.0
2.3.9(3)	Seagrass on Mud	1.2	0.0%	0.0	0.0	1.2
2.3.9/10	Seagrass/Algae	330.8	12.0%	330.8	0.0	0.0
2.3.10	Algae	57.9	2.18	57.9	0.0	0.0
2.3.10(1)	Algae on Sand	6.8	0.28	6.8	0.0	0.0
2.3.10(6)	" on Cobble/Gravel	16.1	0.6%	11.8	3.6	0.7
2.3.10(7)	" on Boulder	4.6	0.2%	1.2	3.4	0.0
BEACH/BAR						
2.4.1	Sand	23.4	0.9%	0.0	23.4	0.0
TIDAL MARS						-
2.5	Unspecified Type	3.2	0.1%	0 - 0	3.2	0.0
2.5.11	Low Salt Marsh	213.6	7.8%	184.0	18.5	11.1
2.5.12	High Salt Marsh	295.4	10.7%	278.2	2.2	15.0
2.5.14	Shrub Marsh	12.4	0.5%	0.0	12.4	0.0

SPECIAL SHORELAND SITES

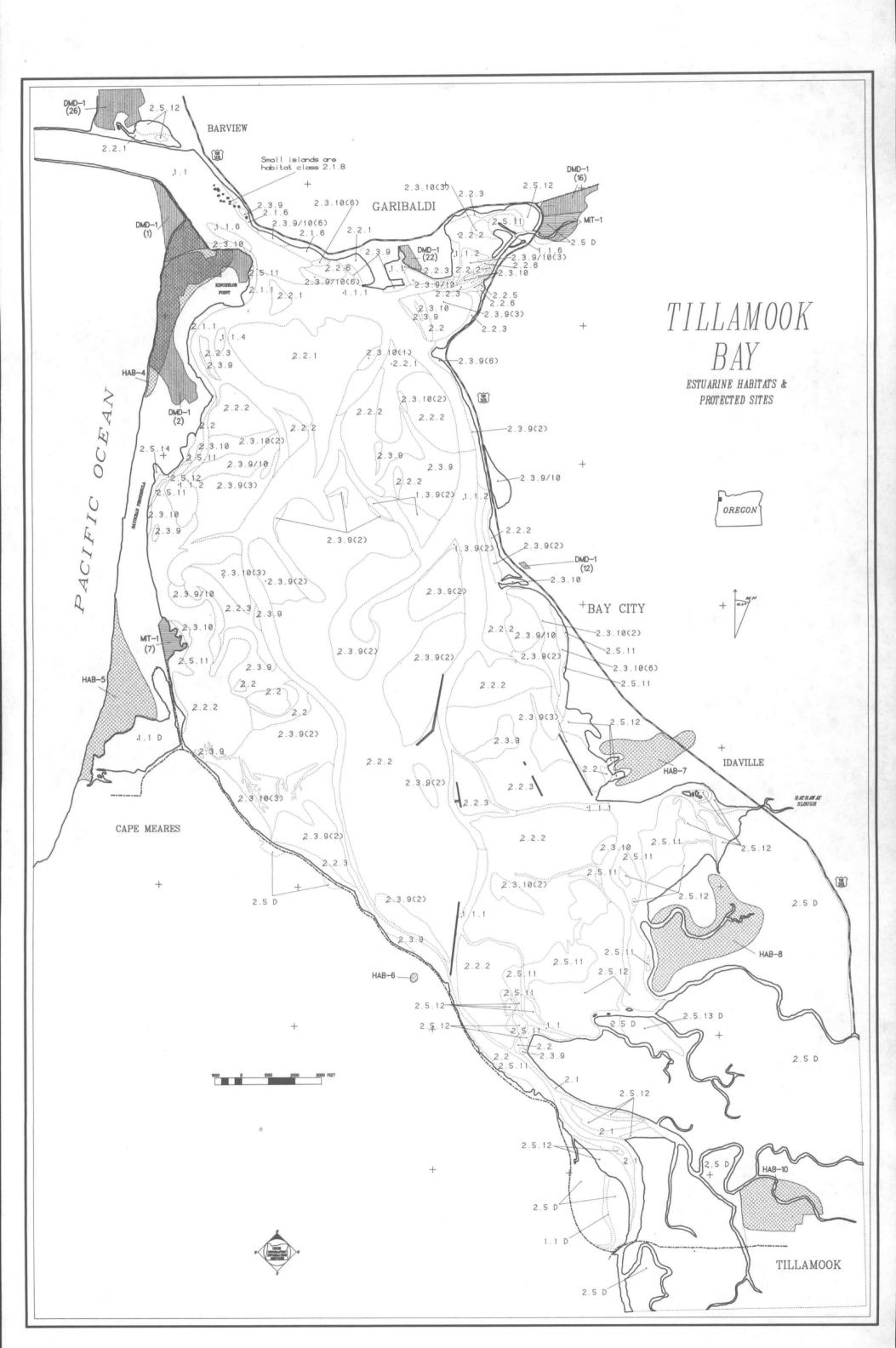
CODE	NAME/Comments		Size	Zone
DREDGED MA	TERIAL DISPOSAL SITES	Capacity		
		Capacity bic Yards)		
DMD 1	SOUTH JETTY	and the second sec	07.5	778.6
DMD 14A	BOAT RAMP	225,000	27.5	RM
DMD 14A		83,080	5.4	F1
DMD 15A	Unmapped. Probably Filled to NTCSD		00.4	
DMD IJA		330,750	22.1	F1
	Not mapped.	460.000		
DMD 2	NEDONNA BEACH	160,000	25.0	RM
DMD 23	STATE PARK AIR STRIP	629,000	65.0	RM
	Not mapped.			
DMD 24	STATE PARK CAMPGROUND	510,000	53.0	RM
	Not mapped.			
DMD 25	STATE PARK MIDDLE	250,000	26.0	RM
DMD 26	STATE PARK SOUTH	290,000	30.0	RM
DMD 4	ED'S MOORAGE	8,500	1.8	WDD
	Not mapped.			
SIGNIFICAN	HABITAT SITES			
HAB 5	WETLAND		0.0	134
		- 1	0.0	F 1
HAB 6	Large forested wetland, Unmapp	ea.		
LAD O	PIGEON	m'11 1 0	0.0	RI
	Pigeon watering area. Also in	Tillamook Count	y juris	dictio
zoned F-1.	Unmapped.			
HAB 7	PLOVER		0 - 0	RM
	Snowy plover nesting habitat.	Unmapped.		
MTTTCATTON	AND RESTORATION SITES			
MIT 1	the second s		40.0	
MLT I	DEAN POINT		10.0	EN
	Breach dike to create high salt	c marsh.		
MIT 2	WHEELER		4.2	
	Breach dike to create high sal	marsh.		
MIT 2	WHEELER		8.0	R-1
MIT 3	MCCOY'S MARSH		5.8	25 EC
	Breach dike to create high salt	marsh.		
AIT 4	ALDER CREEK		38.3	F-
	Remove tidegates and regrade pa	sture		
	to create intertidal marsh.			
AIT 7	NEHALEM SPIT		22.0	RM
	Grade and remove logs at mouth			
	of inlet to increase tidal flow	/S •		
	DENIR DECETODEENIR CIMER			
	DENT DEVELOPMENT SITES			
VDD 10	JETTY FISHERY		0.0	WD
	Recreational Moorage			
DD 5	BOTTS MARSH		20.0	WD
	Marina, aquaculture, water-depe	endent industry.		
NDD 8	FISHERY POINT		0.0	WD
	Aquaculture			
VDD 9	BRIGHTON MOORAGE			WD
	Degraphienel Massa			


Recreational Moorage.

Total Shore	eland Area: 5480.0 acres				MANAGEMENT			Uncon- solida-	Rock	Aquatic				Aquatic	Beach/	Tidal
		Area			CLASS AND UNIT	Total Area	SUBTIDAL	ted Bottom	Bottom	Bed	INTERTIDAL	Shore	Flat	Bed	Bar	Marsh
CLASS/Code	Zone	In Acres	% Shore	% Class	AND UNIT	Area	1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
URBAN		775.4	14.1		TOTAL	9216.3	2123.1	2082.3	0.0	40.8	7093.2	113.2	4113.1	1982.5	0.0	884.4
CC	Commercial Central	71.2	1.3	9.2	NATURAL	4762.7	103.3	63.4	0.0	39.9	4659.4	53.4	2710.8	1048.2	0.0	847.0
CH	Commercial Highway	125.0	2.3	16.1												
F	Forest	17.1	0.3	2.2	EN 1	19.5	0.0	-	-	-	19.5	-	10.3	-	-	9.2
F1	Farm (Exclusive Farm Use)	54.9	1.0	7.1	EN 4	54.6	0.0	-	-	-	54.6	20.6	16.0	18.0	-	-
I-1	General Industrial	27.0	0.5	3.5	EN 5	20.3	0.0	-	-	-	20.3	11.1	-	7.7	-	1.5
					EN 8	185.4	0.0	-	-	-	185.4		74.9	86.7	-	23.8
I-L	Industrial - Light	32.5	0.6	4.2	EN 12	773.3	28.1	28.1	-	-	745.2	21.7	343.1	360.7	-	19.7
0	Open Space	3.0	0.1	0.4	EN 15	340.8	0.0	-	-	-	340.8	-	333.1	7.7	-	-
PUB	Public Facilities	37.3	0.7	4.8	EN 17	473.7	27.2	-	-	27.2	446.5	-	308.6	137.9	-	-
R-O	Resource Open Space	152.8	2.8	19.7	EN 18	15.7	0.0	-	-	-	15.7	-		-	-	15.7
R1	Medium Density Residential	159.7	2.9	20.6	EN 19	556-2	12.7	-	-	12.7	543.5	-	451.1	92.4	-	-
SFW20	Small Farm or Woodlot - 20	3.9	0.1	0.5	EN 22	74.0	0.0	-	-	-	74.0	-	33.5	40.5	-	-
					EN 24	55.2	0.0	-	-	-	55.2	-	55.2	-	-	-
WD 1	Water Dependent Dev. I	56.7	1.0	7.3	EN 27 EN 28	813.3 29.6	24.1	24.1	_	_	789.2 29.6	-	601.6	42.0	-	145.6
WD2	Water Dependent Dev. II	34.2	0.6	4.4	EN 30	972.8	11.2	11.2	_	_	961.6	_	462 1	254.6	-	29.6
					EN 34	283.9	0.0	-	_	-	283.9	-	463.1	234.0	-	243.9
					EN 34 EN 37	31.3	0.0	-	-	_	31.3	_	20.3	_	_	283.9
RURAL		4704.6	85.9		EN 39	63.1	0.0	_	_	_	63.1	_	20.3	_	_	11.0
		-			PU 22	03.1	0.0	-	_	0.0	03.1	_	-		-	03.1
C1	Neighborhood Commercial	5.0	0.1	0.1						0.0						
C2	Community Commercial	47.0	0.9	1.0	CONSERVATION	4320.7	1942.2	1941.3	0.0	0.9	2378.5	59.8	1376.2	905.1	0.0	27 A
F	Forest	2296.7	41.9	48.8	CONDERVATION	4520+7	1742.2	1741.5	0.0	0.9	2378.5	39.8	1370+2	905.1	0.0	37.4
F1	Farm (Exclusive Farm Use)	829.4	15.1	17.6	EC1 6	25.6	4.0	4.0	-	_	21.6	_	16.8	4.8	-	_
LM	Light Industry	4.6	0.1	0.1	EC1 8	7.6	7.6	7.6	_	-	0.0	_	-		_	_
					BC1 9	15.8	0.0	-	-	-	15.8	_	_	_	_	15.8
M1	General Industry	3.5	0.1	0.1	EC1 10	3.5	3.5	3.5	-	-	0.0	_	_	-	_	-
PUB	Public Facilities	33.3	0.6	0.7	BC1 13	88.6	76.7	76.7	-	-	11.9	-	9.7	2.2	_	-
R1	Low Density Urban Res.	19.8	0.4	0.4	EC1 20	30.0	30.0	30.0	_	-	0.0	-	_	-	_	_
R2	Medium Density Urban Res.	10.0	0.2	0.2	EC1 21	21.8	0.0	-	-	-	21.8	-	_	21.8	_	_
R3	High Density Urban Res.	4.0	0.1	0.1	BC1 29	188.4	187.1	187.1	-	-	1.3	-	_	-	_	1.3
-		4000 0	40.7	24 7	EC1 31	9.3	9.3	9.3	-	-	0.0	-	-	-	-	-
RM	Recreation Management	1022-8	18.7	21.7	EC1 32	4.6	4.6	4.6	-	-	0.0	-	-	-	-	-
RR2	Rural Residential - 2	81.0	5.1	6.0	EC1 33	15.1	15.1	15.1	-	-	0.0	-	-	-	-	-
SFW10	Small Farm or Woodlot - 10	13.3	0.2	0.3	BC1 35	68.4	68.4	68.4	-	-	0.0	-	-	_	-	_
SFW20	Small Farm or Woodlot - 20	132.5	2.4	2.8	EC1 36	17.7	17.7	17.7	-	-	0.0	-	-	-	-	_
WDD	Water Dependent Development	1.8	0.0	0.0	EC1 38	41.3	1.2	1.2	_	-	40.1	34.6	2.7	1.1	-	1.7
					EC1 40	81.5	51.1	51.1	-	-	30.4	21.2	_	-	-	9.2
					EC1 43	34.8	34.8	34.8	-	-	0.0	-	-	-	-	-
					EC1 44	7.0	7.0	7.0	-	-	0.0	-	-	-	-	-
					BC2 2	379.2	371.7	371.7	-	-	7.5	0.1	7.4	-	-	-
					BC2 7	36.3	10.3	10.3	-	_ /	26.0	-	21.8	4.2	-	-
					EC2 11	4.3	0.2	0.2	-	-	4.1	-	1.8	2.3	-	
					EC2 14	1026.9	982.3	982.1	-	0.2	44.6	3.9	38.9	1.8	-	-
					ECA 25	2213.0	59.6	58.9	-	0.7	2153.4	-	1277.1	866.9	-	9.4
					DEVELOPMENT	132.9	77.6	77.6	0.0	0.0	55.3	0.0	26.1	29.2	0.0	0.0
					ED 3	102.5	77.6	77.6	-	-	24.9	-	9.3	15.6	-	-
			k.		ED 23	30.4	0.0	-	-	-	30.4	-	16.8	13.6	-	-

60 TILLAMOOK BAY

-



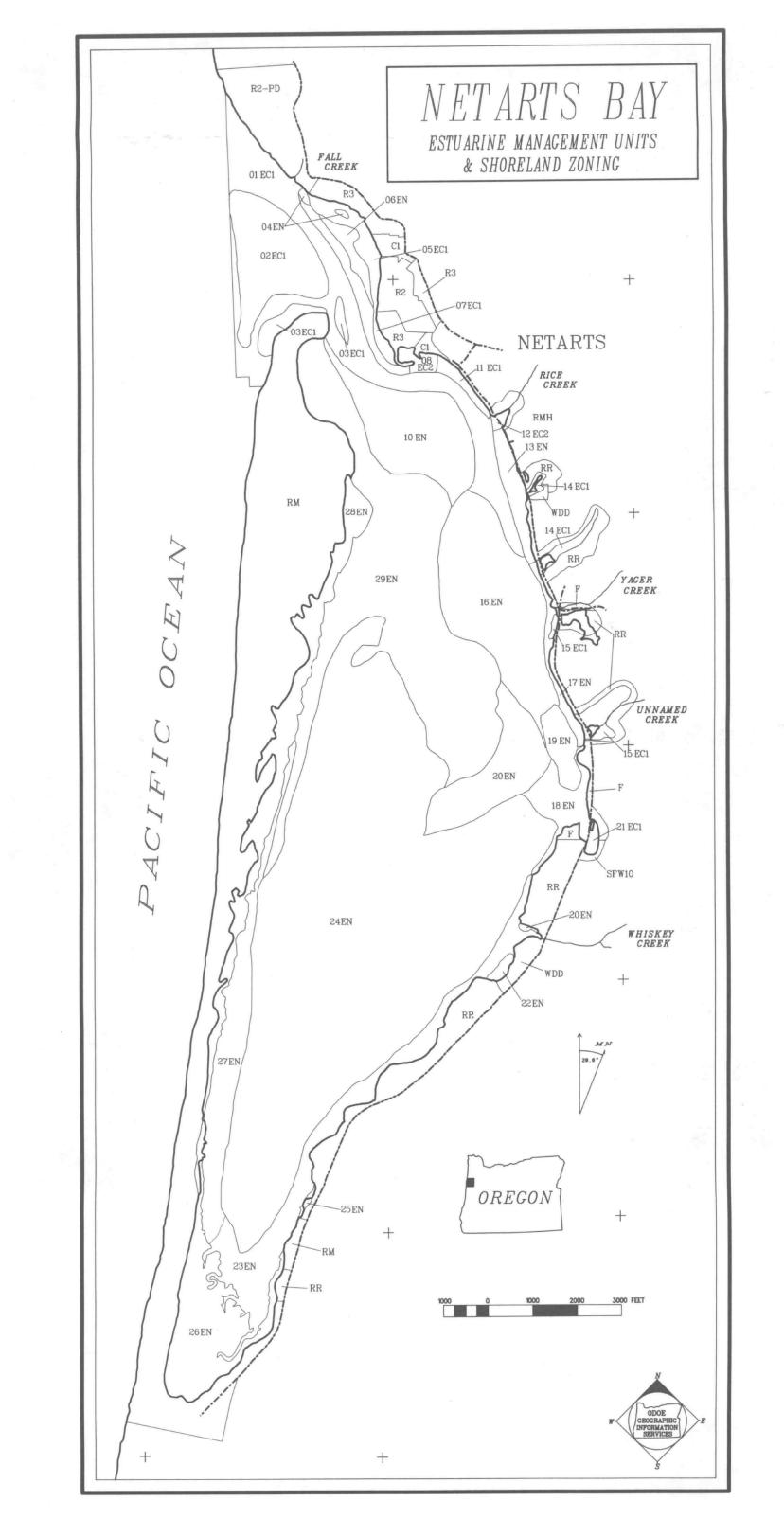
SPRCTAL.	SHORELAND
SERCTUR	SHUKELANI

HABITAT C	LASS/	AREA IN ACRES	PERCENT OF	ACRES IN	ACRES IN	ACRE
CODE	SUBCLASS		ESTUARY	EN	EC	ED
ALL HABIT	ATS	9216.3	100.0%	4762.7	4320.7	132.
UNCONSOLU	DATED BOTTOM					
1.1	Unspecified Type	811.6	8.8%	17.9	751.0	42.
1.1.1	Sand	540.5	5.9%	28.5	477.1	34.
1.1.2	Sand/Mud (Mixed)	698.8	7.6%	17.0	681.8	-
1.1.4	Shell	7.1	0.1%	-	7.1	_
1.1.6	Cobble/Gravel	24.3	0.3%	-	24.3	-
AQUATIC BI 1.3.9(2)	SD Seagrass on Sand/Mud	40.8	0.48	39.9	0.9	
1.3.3(2)	Seagrass on Sand/Aud	40.0	0.40	39.9	0.5	
SHORE 2.1	Unspecified Type	59.7	0.6%		59.7	
2.1.1	Sand	32.8	0.4%	32.8	-	_
2.1.6	Cobble/Gravel	20.5	0.2%	20.5	_	_
2.1.8	Bedrock	0.2	0.0%	0.1	0.1	-
FLAT						
2.2	Unspecified Type	149.1	1.6%	52.5	94.4	2.
2.2.1	Sand Flat	449.7	4.98	418.1	31.6	-
2.2.2	Sand/Mud (Mixed)	2991.2	32.5%	1804.3	1170.1	16.
2.2.3	Mud	501.4	5.48	414.2	80.1	7.
2.2.5	Wood Debris/Organic	1.0	80.0	1.0	-	-
2.2.6	Cobble/Gravel	20.7	0.28	20.7	-	-
AQUATIC BI	3D					
2.3.9	Seagrass	282.7	3.1%	181.1	98.1	3.
2.3.9(2)	Seagrass on Sand/Mud	884.9	9.6%	236.3	645.1	3.
2.3.9(3)	Seagrass on Mud	317.6	3.4%	283.6	30.3	3.
2.3.9/10	Seagrass/Algae	169.4	1.8%	116.4	44.9	8.
	3) " on Mud	15.5	0.2%	11.5	4.0	-
	5) " on Cobble/Gravel	13.4	0.1%	13.4	-	-
2.3.10	Algae	46.1	0.5%	35.2	6.3	4.
2.3.10(1)	Algae on Sand	37.6	0.4%	37.6	-	-
2.3.10(2)	" on Sand/Mud	93.0	1.0%	87.2	-	5.3
2.3.10(3)	on Mud	93.1	1.0%	16.7	76.4	-
2.3.10(6)	on Cobble/Gravel	29.2	0.3%	29.2	-	-
TIDAL MARS						
2.5.11	Low Salt Marsh	322.7	3.5%	311.7	11.0	-
2.5.12	High Salt Marsh	558.4	6.1%	532.0	26.4	-
2.5.14	Shrub Marsh	3.3	80.0	3.3	-	_

CODE	NAME/Comments	Size	Zone
		(In Acres)	
DREDGED M	ATERIAL DISPOSAL SITES Capacity(Cubic	Vards)	
DMD 1	SOUTH JETTY 1,064,	000 110.0	RM
	Snowy plover habitat		
DMD 12	PATTERSON CREEK 44,	000 2.7	HI
DMD 16	MIAMI RIVER 220,	000 17.2	F1
DMD 2	SOUTH JETTY 968,	000 275.0	RM
	Snowy plover, Bald Eagle, Rare Plant		
DMD 22	GARIBALDI BOAT BASIN 54,	000 6.8	WD 1
DMD 26	BARVIEW 306,	000 38.0	RM
DMD 5	MEMALOOSE POINT	800 0.2	WDD
	Not mapped.		
SIGNIFICAN	T HABITAT SITES		
HAB 10	HOQUARTEN SLOUGH	105 0	0.17
	Large forested freshwater wetland.	105.0	O/F
HAB 4	BAYOCEAN SPIT	155 0	
IAD 4		155.0	RM
HAB 5	Snowy plover nesting; rare plant. CAPE MEARES LAKE	125 0	
LAD J		135.0	RM
HAB 6	Snowy Plover Nesting Area. EAGLE'S NEST		_
IAD O		1.5	F
HAB 7	Bald Eagle Nest. KILCHES POINT		
LAD /		82.0	SFW
	Forested freshwater wetland and signi	ficant pigeon	
	watering hole.		
HAB 8	SQUEEDUNK SLOUGH	180.0	F1
	Large forested freshwater wetland.		
IITIGATION	AND RESTORATION SITES		
(IT 1	MIAMI COVE	17.0	F1
	Breach dike to create high intertidal	marsh.	
AIT 7	BAYOCEAN SPIT	25.0	RM
	Grade to create intertidal flat.		
ATER-DEPE	NDENT DEVELOPMENT SITES		
70D 17	COUNTY BOAT LAUNCH	1.0	WDD
7DD 18	OLSEN OYSTER	1.0	WDD
	Oyster Production	1.0	WDD
7DD 19	SMITH SITE	1.0	MDD
	Moorage	1.0	WDD
DD 20	PACIFIC PINES MARINA	2.0	EDD
IDD 20	BIG BARN MARINA	2.0	WDD
	GARIBALDI BOAT BASIN	15.0	WDD WDI
DD C5			
IDD G5			WDI
idd G5 idd G6/8	Industrial, Commercial, Recreational M OLD MILL MARINA		WD1

ND SITES

Total Shorelands Area: 964.1 acres

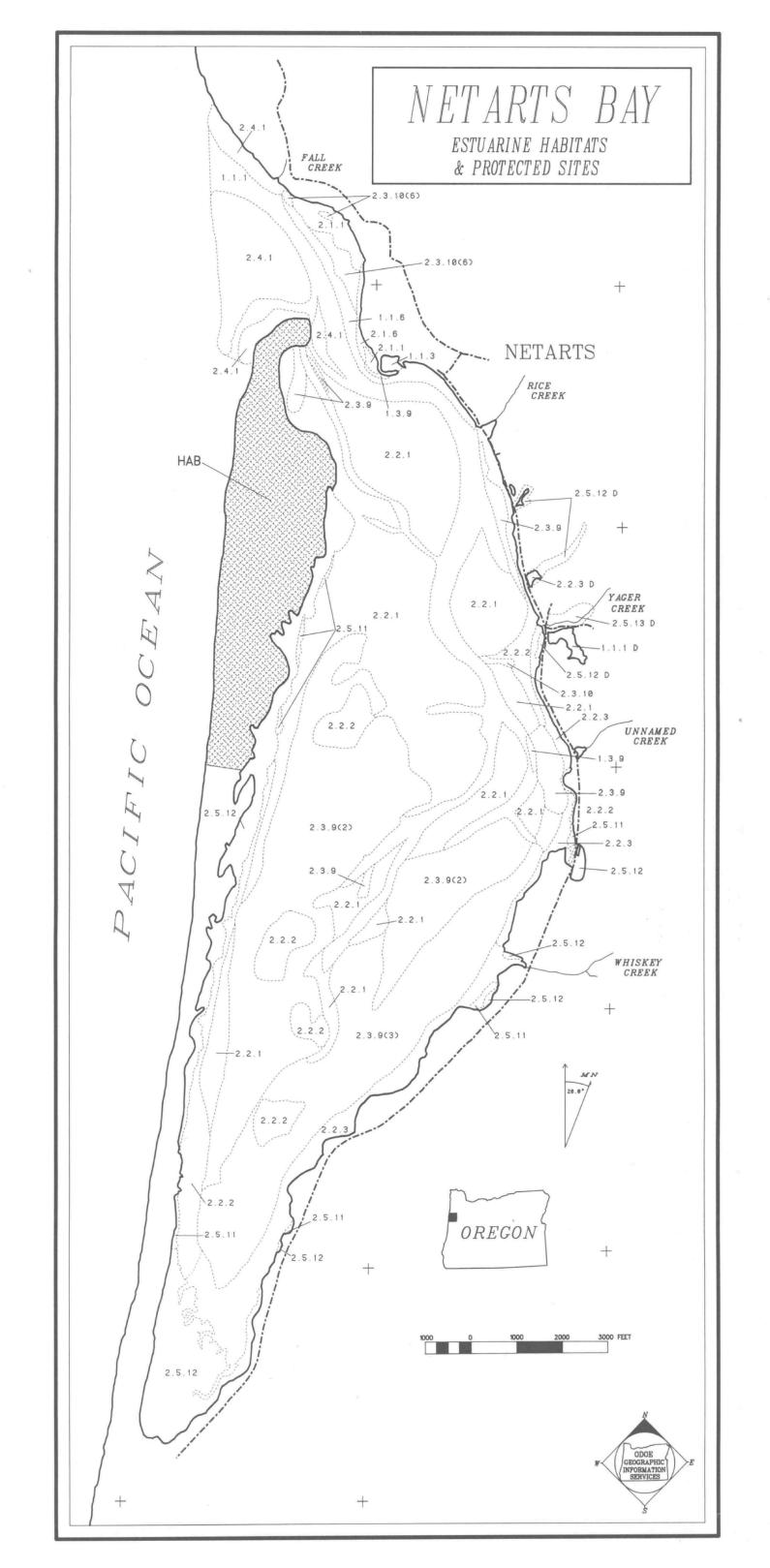

		Area		
CLASS/Code	Zone	In Acres	% Shore	<pre>% Class</pre>
URBAN		164.6	17.1	
C1	Neighborhood Commercial	12.9	1.3	7.8
R2	Medium Density Urban			
	Residential	30.8	3.2	18.7
R2-PD	Medium Density Residential -			
	Planned Development	71.4	7.4	43.4
R3	High Density Urban			
	Residential	42.7	4.4	26.0
RMH	Residential Mobile Home	6.7	0.7	4.1
RURAL		799.5	82.9	
F	Forest	15.2	1.6	1.9
RM	Recreation Management	607.1	63.0	75.9
RR	Rural Residential	160.6	16.7	20.1
SFW10	Small Farm or Woodlot 10	2.5	0.3	0.3
WDD	Water Dependent Development	14.1	1.5	1.8

MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom	Rock Bottom	Aquatic Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
		1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
TOTAL	2742.9	337.5	334.3	0.0	3.2	2405.4	27.9	1090.2	954.4	104.9	228.0
NATURAL	2391.3	159.8	157.6	0.0	2.2	2231.5	3.3	1053.5	950.8	-	223.9
EN 4	2.0	0.0	-	-	-	2.0	-	-	2.0	-	-
EN 6	12.8	0.0	-	-	-	12.8	3.3	-	9.5	-	-
EN 10	115.7	0.0	-	-	-	115.7	-	114.4	1.3	-	-
EN 13	24.1	0.0	-	-	-	24.1	-	11.4	12.7	-	-
EN 16	179.0	57.0	57.0	-	-	122.0	-	119.8	2.2	-	-
EN 17	14.4	0.0	-	-	-	14.4	-	13.7	0.7	-	
EN 18	35.8	3.1	3.1	-	-	32.7	-	28.1	-	-	4.6
EN 19	23.5	2.5	0.3	-	2.2	21.0	-	-	21.0	-	-
EN 20	85.5	38.7	38.7	-	-	46.8	-	45.8	-	-	1.0
EN 22	4.0	0.0	-	-		4-0	-	-	-	-	4-0
EN 23	126.7	0.0	-	-	-	126.7	-	126.7	-	-	-
EN 24	1056.4	31.1	31.1	-	-	1025.3	-	132.6	892.7	-	-
EN 25	1.0	0.0	-	-	-	1.0	-	-	-	-	1.0
EN 26	109.2	0.0	-	-	-	109.2	-	-	-	-	109.2
EN 27	97.8	0.0	-	-	-	97.8	-	97.8	-	-	-
EN 28	104.1	0.0	-	-	-	104.1	-	-	-	-	104.1
EN 29	399.3	27.4	27.4	-	-	371.9	-	363.2	8.7	-	-
CONSERVATION	351.6	177.7	176.7	0.0	1.0	173.9	24.6	36.7	3.6	104.9	4.1
EC1 1	161.7	135.4	135.4	_	_	26.3		20 4		5.0	
BC1 2	97.0	0.0	-	_	_	97.0	_	20.4	_	5.9	-
EC1 3	17.8	2.3	2.3	_	_	15.5	_	- 13.5		97.0	-
BC1 5	28.2	0.0	2.3	_	_				-	2.0	-
BC1 7	23.5	23.5	22.5	_	1.0	28.2	24.6	-	3.6	-	-
EC1 11	8.3	8.3	8.3	_	1.0			-		-	-
BC1 21	4.1	0.0		_	_	0.0	-	-	-	-	
EC2 8	8.2	8.2	8.2	_		4.1	-	-	-	-	4.1
EC2 12	2.8	0.0	8.2	_	_	0.0	-	-	-	-	-
16	2.0	0.0	-	-	-	2.8	-	2.8	-	-	-

HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

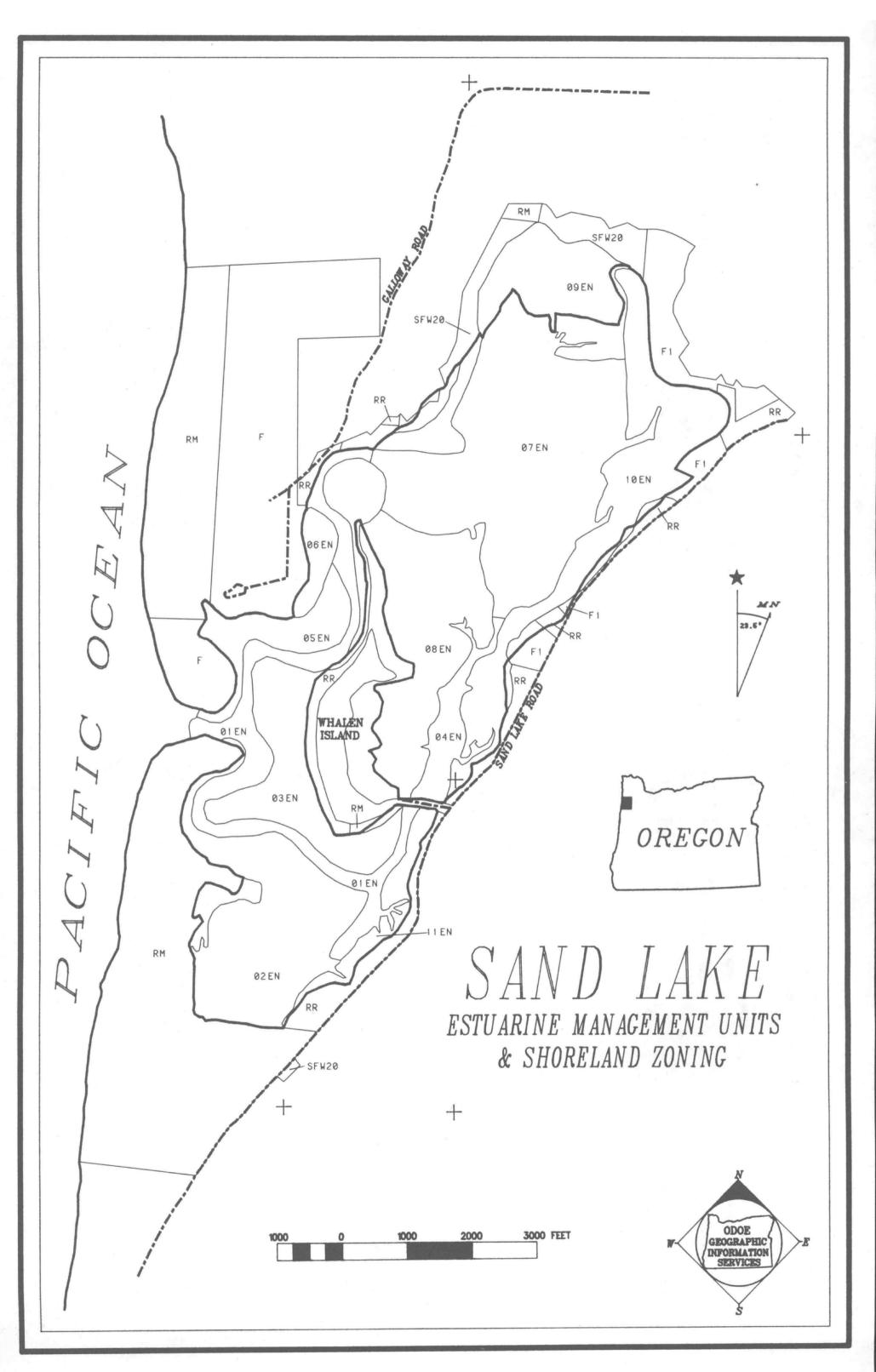
.

100


HABITAT CI	ASS/	AREA IN ACRES	PERCENT	ACRES	ACRES IN
Code	Subclass		ESTUARY	EN	EC
ALL HABITA	ATS	2742.9	100.0%	2391.3	351.6
UNCONSOLIE	DATED BOTTOM				
1.1.1	Sand	295.3	10.8%	157.6	137.7
1.1.3	Mud	3.1	0.1%	-	3.1
1.1.6	Cobble/Gravel	35.9	1.3%	-	35.9
AQUATIC BE	D				
1.3.9	Seagrass	3.2	0.1%	2.2	1.0
SHORE					
2.1.1	Sand	22.4	0.8%	3.3	19.1
2.1.6	Cobble/Gravel	5.5	0.2%		5.5
FLAT					
2.2.1	Sand	717.2	26.1%	716.7	0.5
2.2.2	Sand/Mud (Mixed)	223.6	8.2%	187.4	36.2
2.2.3	Mud	149.4	5.4%	149.4	-
AQUATIC BE	D				
2.3.9	Seagrass	47.2	1.7%	47.2	-
2.3.9(2)	Seagrass on Sand/Mud	544.5	19.9%	544.5	-
2.3.9(3)	Seagrass on Mud	345.4	12.6%	345.4	-
2.3.10	Algae	2.2	0.1%	2.2	-
2.3.10(6)	" on Cobble/Gravel	15.1	0.6%	11.5	3.6
BEACH/BAR					
2.4.1	Sand	104.9	3.8%	-	104.9
TIDAL MARS	н				
2.5.11	Low Salt Marsh	12.9	0.5%	12.9	-
2.5.12	High Salt Marsh	215.1	7.8%	211.0	4.1

SPECIAL SHORELAND SITES

Salmon Hatchery

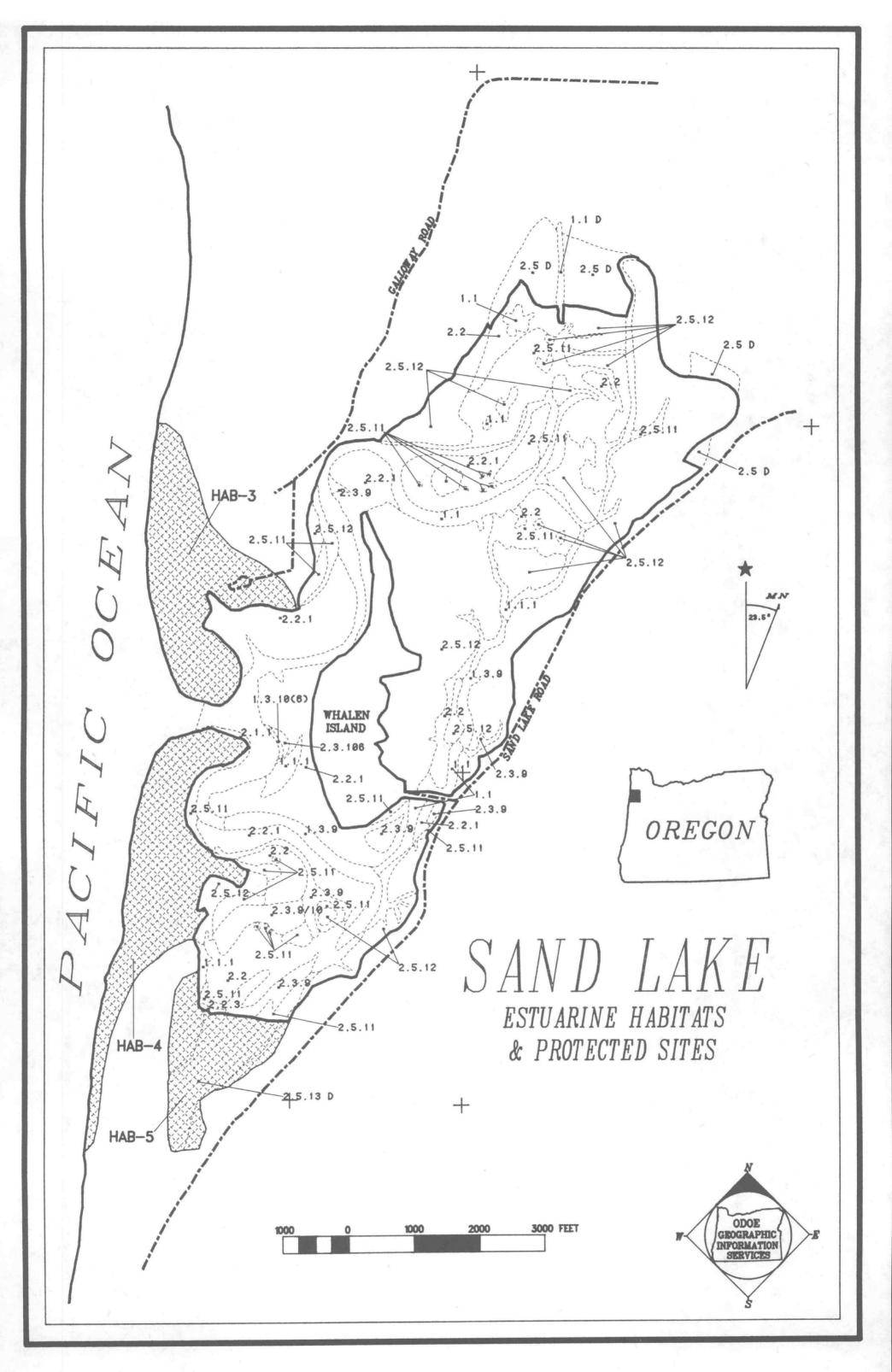

CODE	NAME/Comments	Size	Zone
SIGNIFIC	ANT HABITAT SITE		
HAB 1	NETARTS SPIT Snowy Plover Nesting Area and Harbo	340.0 or Seal Haul-out.	RM
WATER DE	PENDENT DEVELOPMENT SITES		
WDD 27	HANSON OYSTERS Oyster Hatchery	0.0	WDD

66 NETARTS BAY

Total Shore	eland Area: 806.1 acres	Area In Acres	Shore	% Class	MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom	Rock Bottom	Aquatic Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
	Bone	III ACTES	6 DIOLE	6 01035			1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
RURAL	· · ·	806.1	100.0		TOTAL	897.4	139.5	113.7	0.0	25.8	757.9	2.1	253.2	39.8	0.0	462.8
F	Forest	217.9	27.0	27.0	NATURAL											
F1	Farm (Exclusive Farm Use	54.8	6.8	6.8												
RM	Recreation Management	388.1	48.2	48.2	EN 1	77.9	62.6	45.4	-	17.2	15.3	0.5	14.3	-	-	0.5
RR	Rural Residential	101.1	12.5	12.5	EN 2	134.8	2.2	2.2	-	-	132.6	1.6	66.4	31.3	-	33.3
SFW20	Small Farm or Woodlot - 20	44.2	5.5	5.5	EN 3	95.4	9.8	9.1	-	0.7	85.6	-	79.2	5.9	-	0.5
					EN 4	26.0	12.9	5.0	-	7.9	13.1	-	8.1	1.6	-	3.4
					EN 5	38.0	3.2	3.2	-	-	34.8	-	34.8	-	-	-
					EN 6	14.1	2.3	2.3	-	-	11.8	-	0.6	-	-	11.2
					EN 7	231.2	43.6	43.6	-	-	187.6	-	47.6	-	-	140.0
					EN 8	110.8	0.0	-	-	-	110.8	-	-		-	110.8
					EN 9	32.3	2.9	2.9	-	-	29.4	-	-	-	-	29.4
					EN 10	115.2	0.0	-	-	_	115.2	-	-	-	-	115.2
					EN 11	21.7	0.0	-	-	-	21.7	-	2.2	1.0	-	18.5

.....

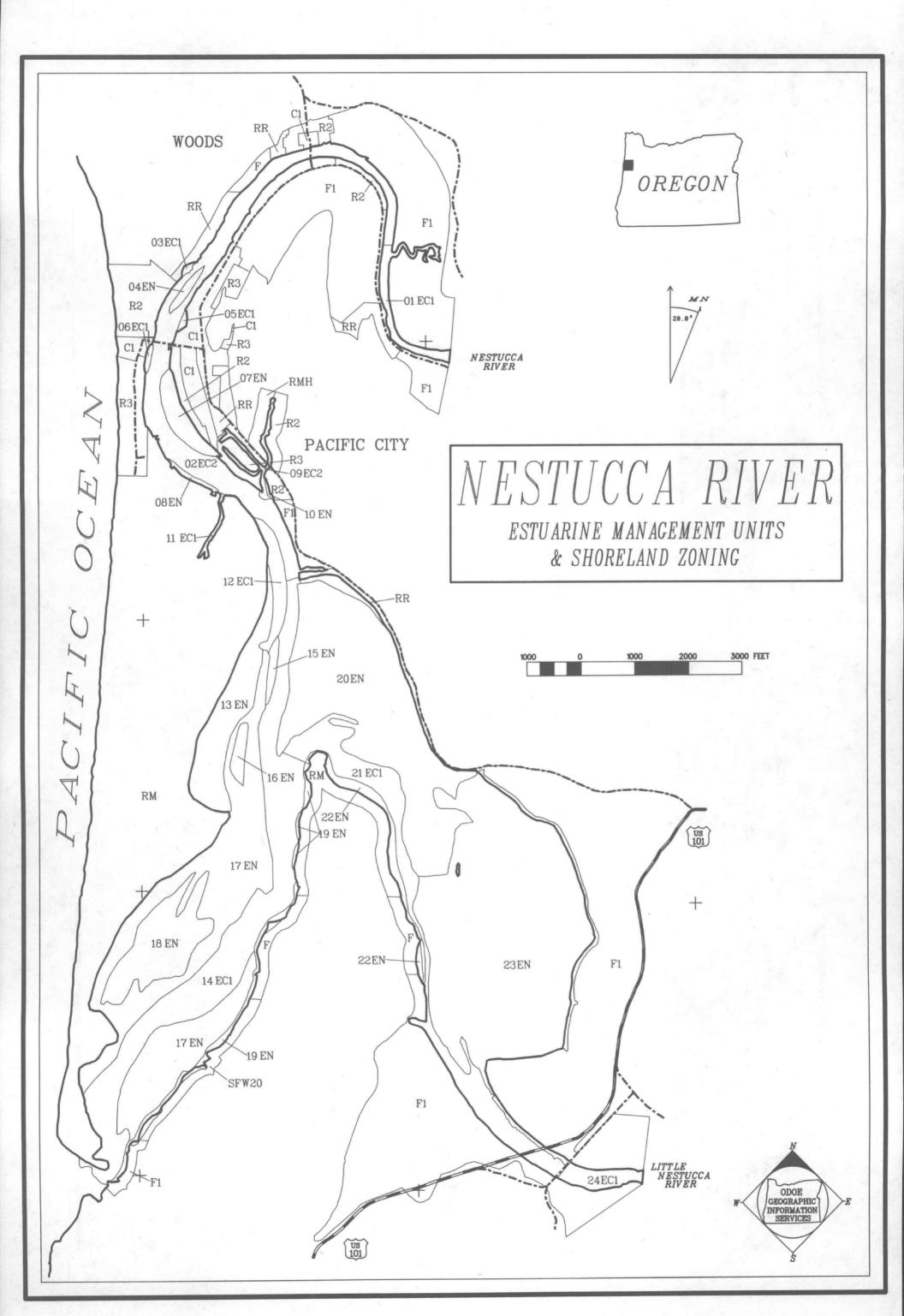
HABITAT CI	222	AREA IN ACRES	PERCENT OF					
Code	Subclass	IN ACKED						
code	Subclass		ESTUARY					
ALL HABITA	MTS	897.4	100.0%					
UNCONSOLIDATED BOTTOM								
1.1	Unspecified Type	100.4	11.28					
1.1.1	Sand	13.3	1.5%					
AQUATIC BED								
1.3.9	Seagrass	25.1	2.8%					
1.3.10(6)	" on Cobble/Gravel	0.7	0.1%					
SHORE								
2.1.1	Sand	2.1	0.2%					
FLAT								
2.2	Unspecified Type	75.7	8.4%					
2.2.1	Sand	176.8	19.7%					
2.2.3	Mud	0.7	0.1%					
AQUATIC BED								
2.3.9	Seagrass	25.9	2.9%					
2.3.9/10	Seagrass/Algae	12.8	1.4%					
2.3.10(6)	" on Cobble/Gravel	1.1	0.1%					
TIDAL MARSH								
2.5.11	Low Salt Marsh	128.6	14.3%					
2.5.12	High Salt Marsh	334.2	37.2%					


CODE		NAME/Comments					
SIG	NIFICANT	HABITAT SITES					
HAB	3	SAND LAKE CAMPGROUND					
		Snowy Plover Nesting Habitat.					
HAB	4	BELTZ FARM SPIT					
		Snowy Plover Nesting Habitat.					
HAB	5	BELTZ FARM WETLAND					
		Freshwater Wetland.					
WATER-DEPENDENT DEVELOPMENT SITE							
WDD	34	KETA SALMON FACILITY					
		Salmon Hatchery					

SPECIAL SHORELAND SITES

 Size	Zone
0.0	RM/F
0.0	RM
0.0	RM
0.0	RM

0.0 ---


.

Total Shoreland Area: 1450.8 acres

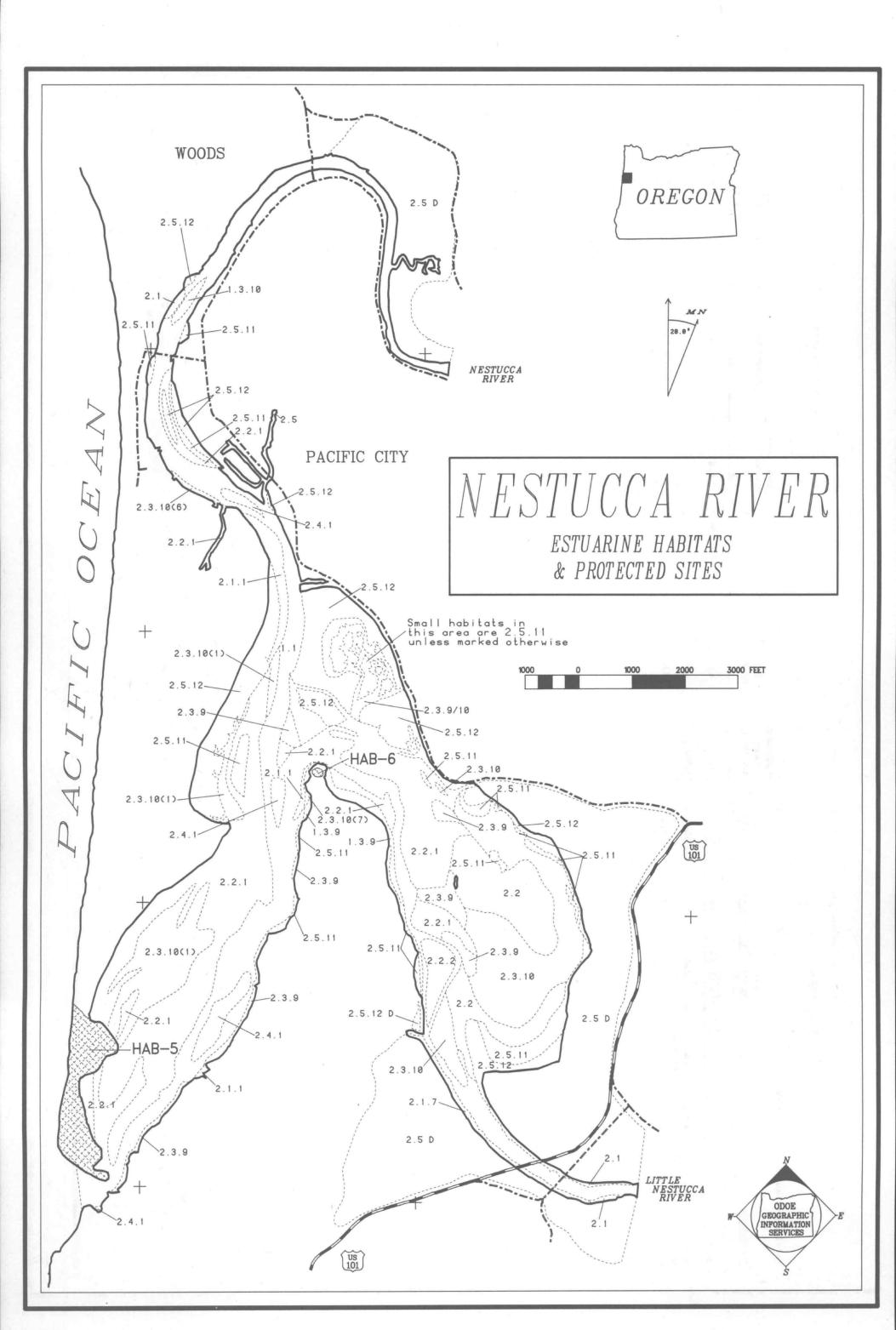
		Area		
CLASS/Code	Zone	In Acres	% Shore	<pre>% Class</pre>
URBAN		195.5	13.5	
C1	Neighborhood Commercial	55.9	3.9	28.6
F1	Farm (Exclusive Farm Use)	6.6	0.5	3.4
R2	Medium Density Urban			
	Residential	58.3	4.0	29.8
R3	High Density Urban			
	Residential	49.0	3.4	25.1
RMH	Residential - Mobile Home	6.9	0.5	3.5
RR	Rural Residential	18.9	1.3	9.7
RURAL		1255.2	86.5	
P	Forest	22.8	1.6	1.8
F1	Farm (Exclusive Farm Use)	674.7	46.5	53.8
RM	Recreation Management	523.1	36.1	41.7
RR2	Rural Residential - 2	1.1	1.5	1.7
SFW20	Small Farm or Woodlot 20	13.4	0.9	1.1

MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom 1.1	Rock Bottom 1.2	Aquatic Bed 1.3	INTERTIDAL 2.	Shore	Flat 2.2	Aquatic Bed 2.3	Beach/ Bar 2.4	Tidal Marsh 2.5
TOTAL	1175.6	311.2	298.6	0.0	12.6	864.4	27.6	383.3	229.8	19.1	204.6
NATURAL	821.5	50.1	37.5	0.0	12.6	771.4	0.7	334.8	229.8	8.3	197.8
EN 4	3.1	3.1	-	-	3.1	0.0	-	-	-	-	-
EN 7 EN 8	13.5	0.0	_	_	_	13.5	-	3.3	- 1	-	10.2
EN 10	0.5	0.0	_	_	_	0.5	_	_	2.1	_	0.5
EN 13	48.0	0.0	_	_	_	48.0	_	3.2		_	38.7
EN 15	3.6	0.0	-	_	_	3.6	-	-	3.6	-	-
EN 16	5.5	0.0	-	-	-	5.5	-	-	-	-	5.5
EN 17	185.3	30.1	30.1	-	-	155.2	_	135.9	10.5	8.3	0.5
EN 18	50.2	0.0	-	-	-	50.2	-	4.2		-	-
EN 19	14.1	0.8	-	-	0.8	13.3	0.7	_	11.3	-	1.3
EN 20	186.3	2.7	2.7	-	-	183.6	-	80.7	20.6	-	82.3
EN 22	14.4	8.7	-	-	8.7	5.7	-	-	0.4	-	5.3
EN 23	294.9	4.7	4.7	-	-	290.2	-	107.5	129.2	-	53.5
CONSERVATION	354.1	261.1	261.1	0.0	0.0	93.0	26.9	48.5	0.0	10.8	6.8
EC1 1	12.7	12.7	12.7	-	-	0.0	-	-	-	-	-
EC1 3	0.7	0.0	-	-	-	0.7	-	-	-	-	0.7
BC1 5	0.9	0.0	-	-	-	0.9	-	-	-	-	0.9
EC1 6	1.2	0.0	-	-	-	1.2	-	-	-	-	1.2
BC1 11	2.1	0.0	-	-	-	2.1	-	2.1	-	-	-
BC1 12	13.4	0.0	-	-	-	13.4	9.5	-	-	-	3.9
EC1 14	140.6	95.2	95.2	-	-	45.4	1.6	35.8	-	8.0	-
EC1 21	72.4	57.9	57.9	-	-	14.5	7.5	7.0	-	-	-
EC1 24	11.3	7.8	7.8	-	-	3.5	3.5	-	-	-	-
EC2 2	92.2	81.0	81.0	-	-	11.2	4.8	3.6	-	2.8	-
EC2 9	6.6	6.5	6.5	-	-	0.1	-	-	-	-	0.1

Code Subclass ESTUARY EN ALL HABITATS 1175.6 100.0% 821.5 UNCONSOLIDATED BOTTOM 1175.6 100.0% 821.5 UNCONSOLIDATED BOTTOM 1175.6 298.6 25.4% 37.5 AQUATIC BED 1.3.9 Seagrass 9.5 0.8% 9.5 1.3.9 Seagrass 9.5 0.8% 9.5 1.3.10 Algae 3.1 0.3% 3.1 SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - PLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10(1) Algae 112.9 9.6%	HABITAT CLASS/		AREA IN ACRES	PERCENT	ACRES	ACRES
UNCONSOLIDATED BOTTOM 1.1 Unspecified Type 298.6 25.4% 37.5 AQUATIC BED 1.3.9 Seagrass 9.5 0.8% 9.5 1.3.9 Seagrass 9.5 0.8% 9.5 1.3.10 Algae 3.1 0.3% 3.1 SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7 - 2.1.7 Boulder 8.4 0.7% - PLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.6% 16.7 2.3.10(1) Algae 112.9 9.6% 112.9 2.6% 16.2 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>EC</th></td<>						EC
1.1 Unspecified Type 298.6 25.4% 37.5 AQUATIC BED 1.3.9 Seagrass 9.5 0.8% 9.5 1.3.10 Algae 3.1 0.3% 3.1 SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7% 2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 2.3.9 Seagrass 30.6 2.6% / 30.6 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae on Sand 66.2 5.6% 66.2 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder	ALL HABITATS		1175.6	100.0%	821.5	354.1
AQUATIC BED 1.3.9 Seagrass 9.5 0.8% 9.5 1.3.10 Algae 3.1 0.3% 3.1 SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 23.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae on Sand 66.2 5.6% 66.2 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6%	UNCONSOLID	ATED BOTTOM				
1.3.9 Seagrass 9.5 0.8% 9.5 1.3.10 Algae 3.1 0.3% 3.1 SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1 Sand 15.1 1.3% 0.7 2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.4.1 Sand 19.1 1.6% 8.3 BEACH/BAR 2.5 Unspecified Type	1.1	Unspecified Type	298.6	25.48	37.5	261.1
1.3.10 Algae 3.1 0.3% 3.1 SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 23.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 2.5 Unspecified Type 0.1 0.0% -	AQUATIC BE	D				
SHORE 2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae 112.9 9.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	1.3.9	Seagrass	9.5	0.8%	9.5	-
2.1 Unspecified Type 4.1 0.3% - 2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 2.5 Unspecified Type 0.1 0.0% -	1.3.10	Algae	3.1	0.3%	3.1	-
2.1.1 Sand 15.1 1.3% 0.7 2.1.7 Boulder 8.4 0.7% - FLAT - - - - 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED - - - - 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR - - - - 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH - - - - 2.5 Unspecified Type	SHORE					
2.1.7 Boulder 8.4 0.7% - FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) on Boulder 1.3 0.1% 1.3 BEACH/BAR 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.1	Unspecified Type	4.1	0.3%	-	4.1
FLAT 2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.1.1	Sand	15.1	1.3%	0.7	14.4
2.2 Unspecified Type 82.9 7.1% 82.9 2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 12.6 1.1% 12.6 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.1.7	Boulder	8.4	0.7%	-	8.4
2.2.1 Sand 287.8 24.5% 239.3 2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9 Seagrass/Algae 16.7 1.4% 16.7 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae on Sand 66.2 5.6% 66.2 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	FLAT					
2.2.2 Sand/Mud (Mixed) 12.6 1.1% 12.6 AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.2	Unspecified Type	82.9	7.1%	82.9	-
AQUATIC BED 2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.2.1	Sand	287.8	24.5%	239.3	48.5
2.3.9 Seagrass 30.6 2.6% / 30.6 2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.2.2	Sand/Mud (Mixed)	12.6	1.1%	12.6	-
2.3.9/10 Seagrass/Algae 16.7 1.4% 16.7 2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR	QUATIC BE	D				
2.3.10 Algae 112.9 9.6% 112.9 2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.3.9	Seagrass	30.6	2.6% /	30.6	-
2.3.10(1) Algae on Sand 66.2 5.6% 66.2 2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.3.9/10	Seagrass/Algae	16.7	1.4%	16.7	-
2.3.10(6) " on Cobble/Gravel 2.1 0.2% 2.1 2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.3.10	Algae	112.9	9.6%	112.9	-
2.3.10(7) " on Boulder 1.3 0.1% 1.3 BEACH/BAR 2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.3.10(1)	Algae on Sand	66.2	5.6%	66.2	-
BEACH/BAR 19.1 1.6% 8.3 TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	2.3.10(6)	" on Cobble/Gravel	2.1	0.2%	2.1	-
2.4.1 Sand 19.1 1.6% 8.3 TIDAL MARSH - </td <td>2.3.10(7)</td> <td>" on Boulder</td> <td>1.3</td> <td>0.1%</td> <td>1.3</td> <td>-</td>	2.3.10(7)	" on Boulder	1.3	0.1%	1.3	-
TIDAL MARSH 2.5 Unspecified Type 0.1 0.0% -	BEACH/BAR					
2.5 Unspecified Type 0.1 0.0% -	2.4.1	Sand	19.1	1.6%	8.3	10.8
	IDAL MARS	B				
	2.5	Unspecified Type	0.1	0.0%	-	0.1
2.2.1.1 TOM PATC MATSH 72.0 2.12 2/0/	2.5.11	Low Salt Marsh	59.8	5.1%	57.7	2.1
2.5.12 High Salt Marsh 144.7 12.3% 140.1	2.5.12	High Salt Marsh	144.7	12.3%	140.1	4.6

NAME/Comments

SIG	NIFICANT I	HABITAT SITES
HAB	5	NESTUCCA SPIT STATE PARK Snowy Plover Nesting Area.
HAB	6	CANNERY POINT Eagle Roosting Area.
WATI	SR-DEPENDI	ENT DEVELOPMENT SITE
WDD	40	NESTUCCA SPIT STATE PARK Boat Ramp.

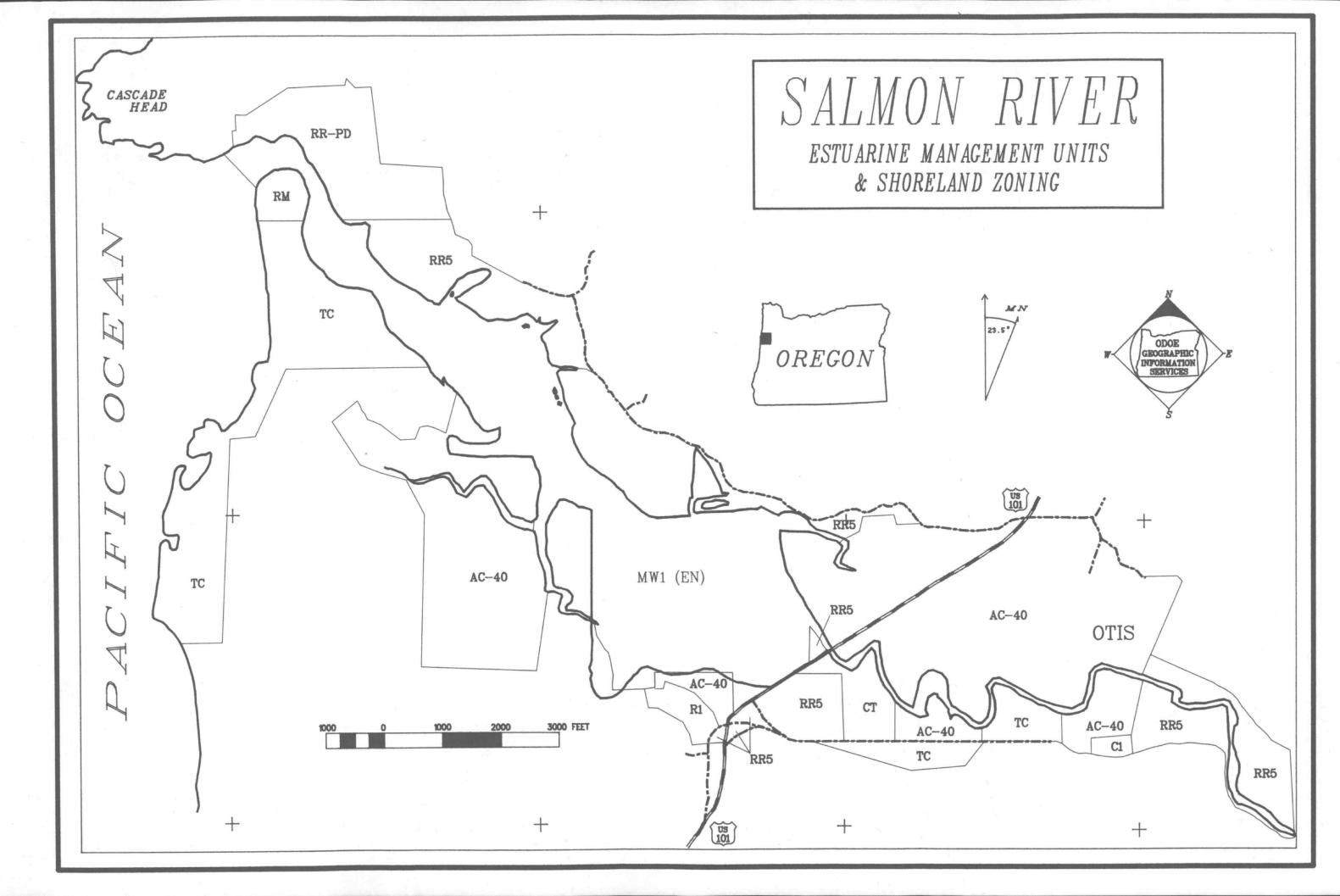

CODE

74 nestucca bay

SPECIAL SHORELAND SITES

 Size	Zone
40.0	RM
1.0	RM

RM

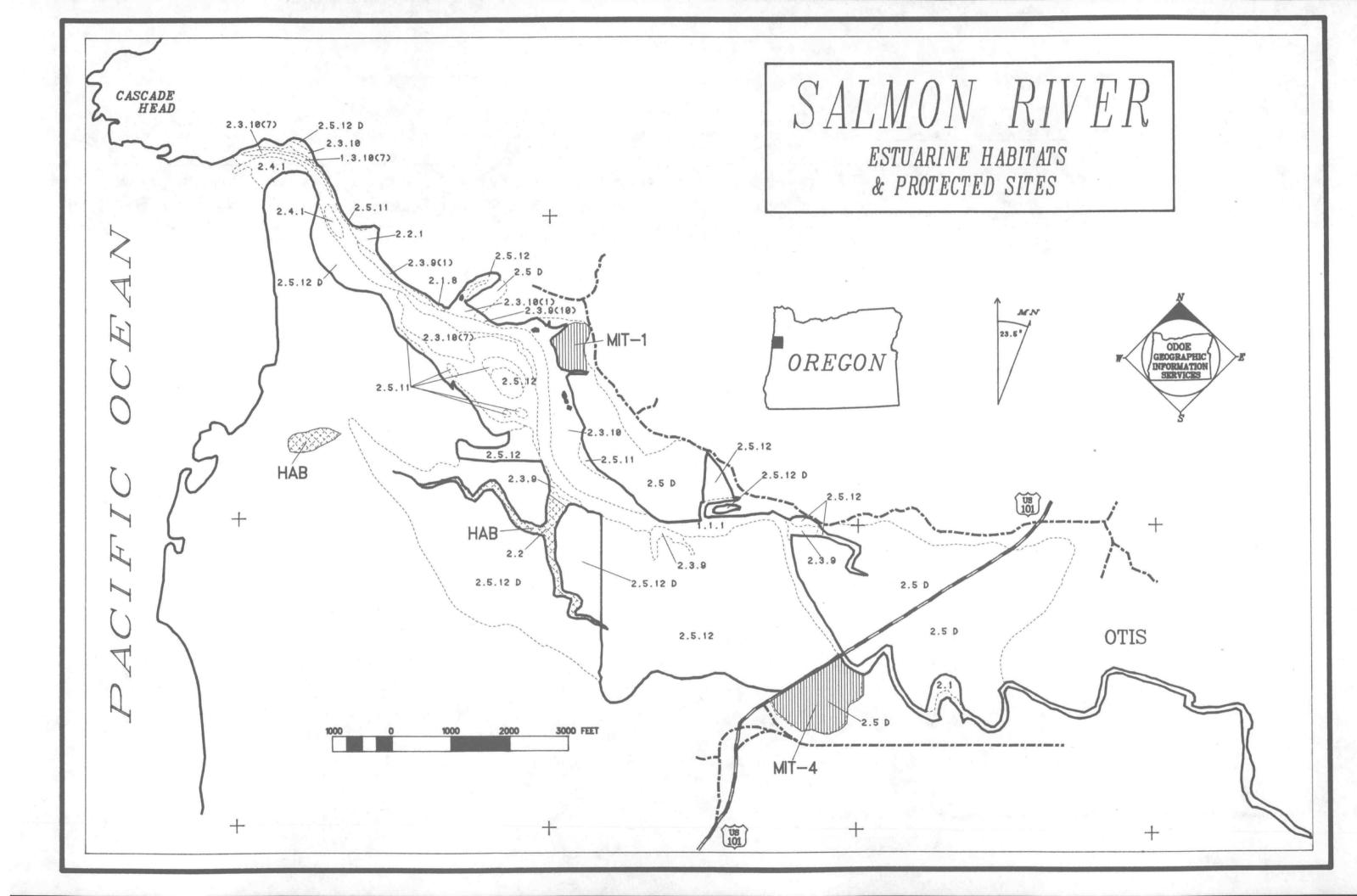


Total Shoreland Area: 1255.2 acres

CLASS/Code	Zone	Area In Acres	% Shore	<pre>% Class</pre>
			1	
RURAL		1255.2	100.0	
AC-20	Agricultural Conservation 20	8.6	16.6	16.6
AC-40	Agricultural Conservation 40	423.5	33.7	33.7
C1	Retail Commercial	5.4	0.4	0.4
CT	Tourist Commercial	29.2	2.3	2.3
R1	Residential Zone - R-1	15.5	1.2	1.2
RM	Recreation Management ¹	24.5	1.9	1.9
RR5	Rural Residential - 5	320.4	25.5	25.5
TC	Timber Conservation	228.2	18.2	18.2

MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom	Rock Bottom	-	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
And only alou	1.0	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5	
TOTAL	437.9	97.9	95.5	0.0	2.4	340.0	5.2	13.7	73.5	9.0	238.6
NATURAL					1.1						
MW 1	437.9	97.9	95.5	-	2.4	340.0	5.2	13.7	73.5	9.0	238.6

1 Recreation Management (RM) is a Tillamook County zoning district.


	300/	AREA IN ACRES	PERCENT
HABITAT CI	Subclass	IN ACKES	OF
Code	Subclass		ESTUARY
ALL HABITA	TS	437.9	100.0%
UNCONSOLIE	DATED BOTTOM		
1.1.1	Sand	95.5	21.8%
AQUATIC BE	D		
1.3.10(7)	Algae on Boulders	2.4	0.5%
SHORE			
2.1	Unspecified Type	4.3	1.0%
2.1.8	Bedrock	0.9	0.2%
FLAT			
2.2	Unspecified Type	10.5	2.4%
2.2.1	Sand	3.2	0.7%
AQUATIC BE	D		
2.3.9	Seagrass	7.3	1.7%
2.3.9(1)	Seagrass on Sand	3.9	0.9%
2.3.9/10	Seagrass/Algae	1.5	0.3%
2.3.10	Algae	37.7	8.6%
2.3.10(1)	Algae on Sand	3.5	88.0
2.3.10(7)	Algae on Boulders	19.6	4.5%
BEACH/BAR			
2.4.1	Sand	9	2.18
TIDAL MARS	H		
2.5.11	Low Salt Marsh	12.8	2.9%
2.5.12	High Salt Marsh	225.8	51.6%

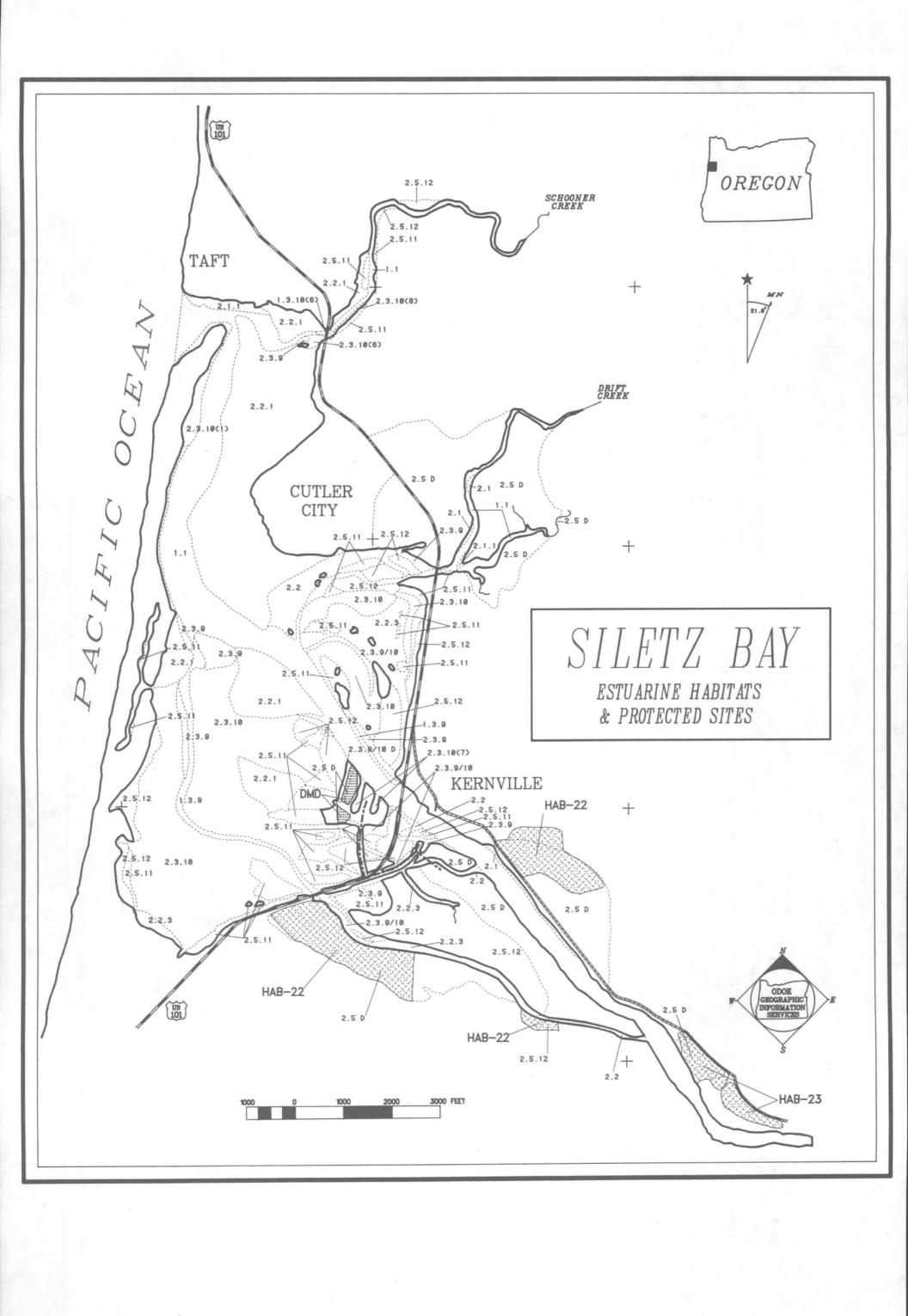
SPECIAL	SHORELAN
---------	----------

CODE	NAME/Comments	Size	Zone
SIGNIFICANT	HABITAT SITES		
НАВ 29	ROWDY CREEK MARSHES	16.0	AC40/MW1
	Forested and shrub-dominated wetlands.		
HAB 30D	COON LAKE	0.0	TC
	Coastal Lake.		
MITIGATION A	BOAT RAMP Remove Dike, Not Mapped.	9.5	RR 5
MIT 4	US 101	30.0	RM
	Remove Dike. Not Mapped.		
WATER-DEPENI	DENT DEVELOPMENT SITE		
WDD 1	KNIGHT COUNTY PARK	0.0	PF
	Recreational Access		

ND SITES

-

Total Shoreland Area: 1753.8 acres

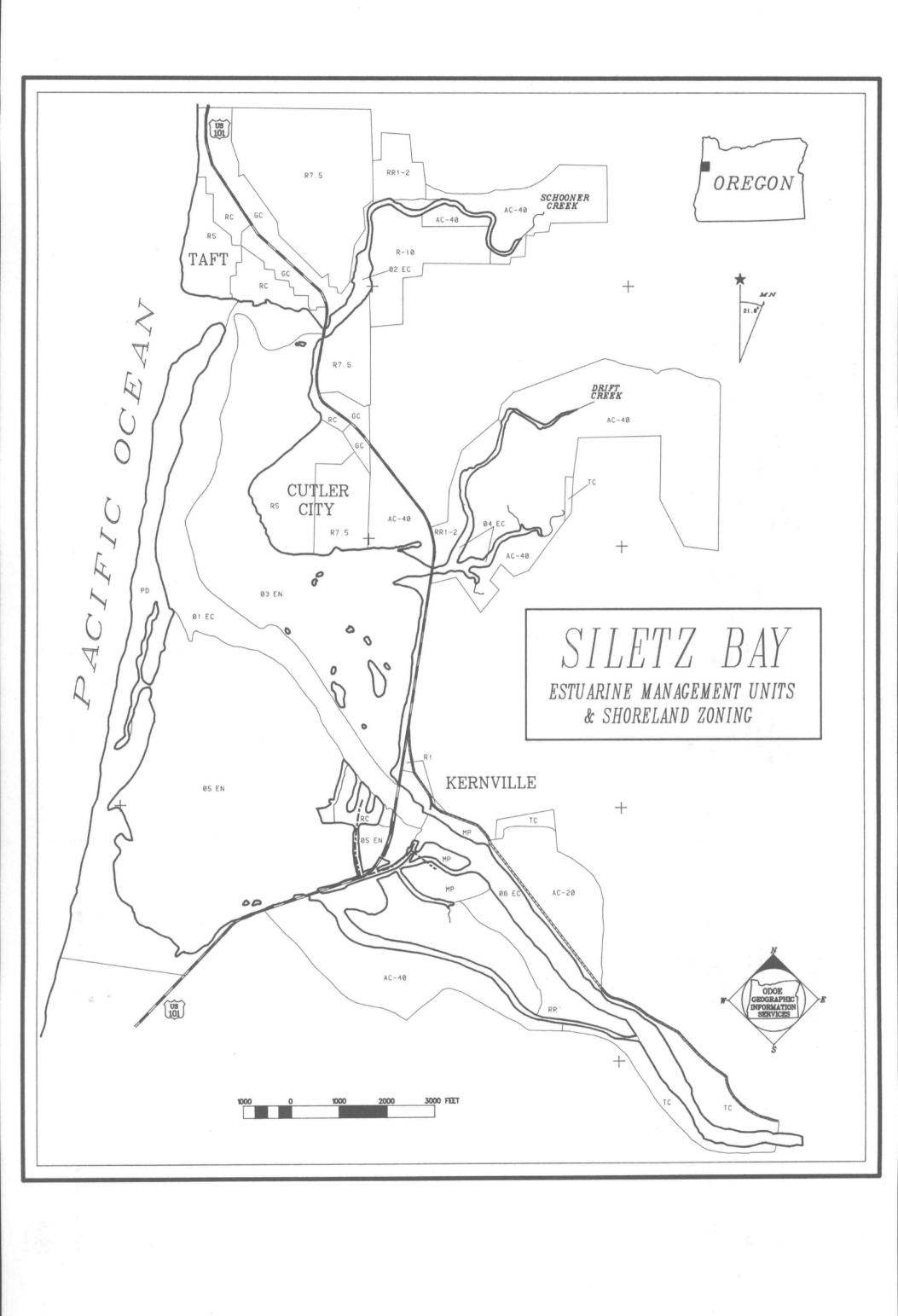

HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

		Area		
CLASS/Code	Zone	In Acres	% Shore	<pre>% Class</pre>
URBAN		602.3	34.3	
GC	General Commercial	88.0	5.0	14.6
R5	Residential, High Density	113.0	6.4	18.8
R7.5	Residential, Med. Density	341.9		
RC	Recreation Commercial		19.5	56.8
RUL .	Recreation Commercial	59.4	3.4	9.9
RURAL		1151.5	65.7	
AC-20	Agriculture Conservation 20	89.6	5.1	7.8
AC-40				
GC	Agriculture Conservation 40 General Commercial	566.5	32.3	49.2
GC MDP		7.8	0.4	0.7
	Planned Marine	15.0	0.9	1.3
PD	Planned Development	233.4	13.3	20.3
-				
R1	Residential R-1	3.4	0.2	0.3
R7.5	Residential - Medium Density	21.9	1.2	1.9
RC	Recreation Commercial	24.1	1.4	2.1
RR1-2	Rural Residential 1-2	105.2	6.0	9.1
FC	Timber Conservation	84.7	4.8	7.4

.

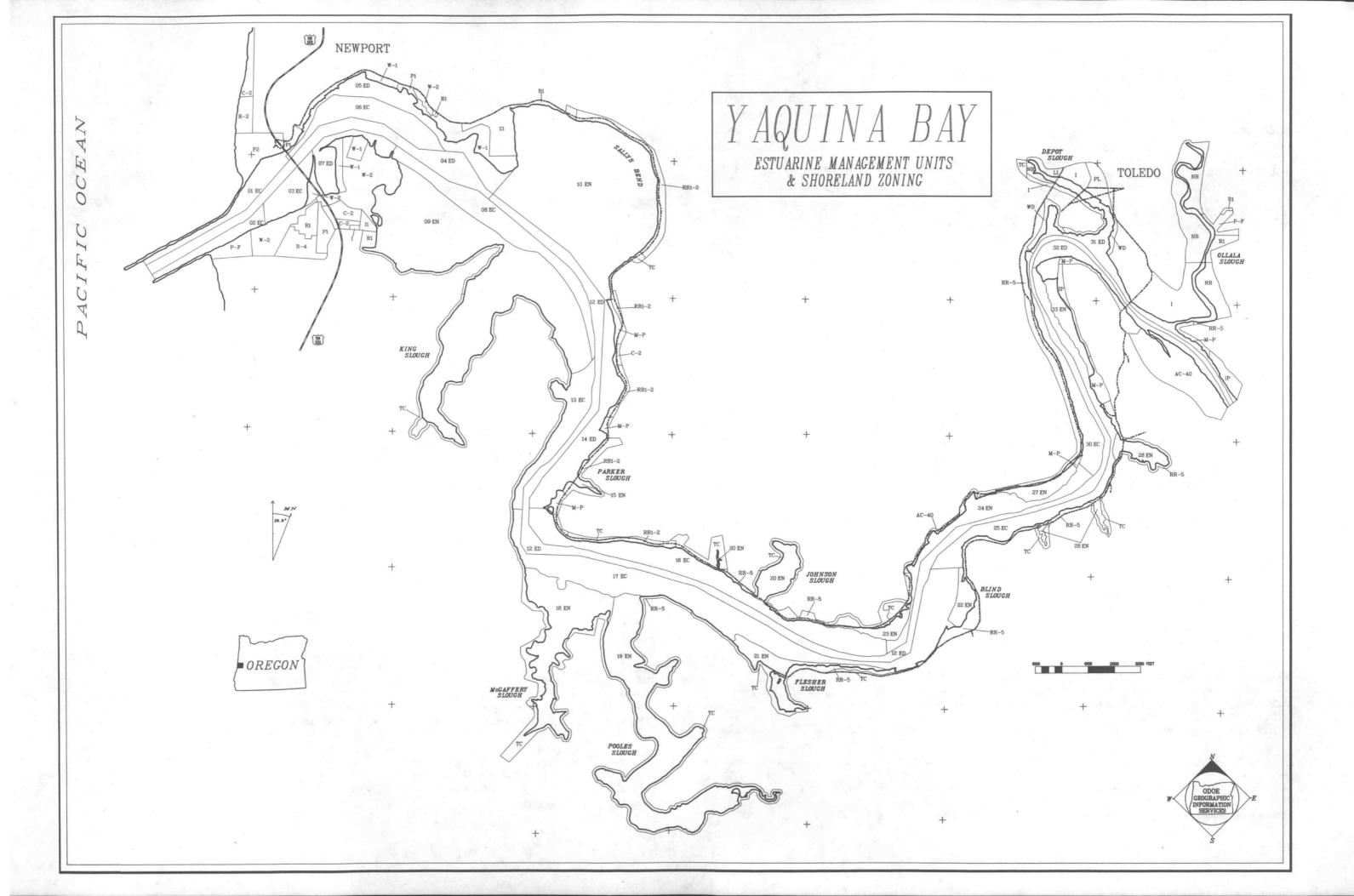
Total Area	SUBTIDAL	Uncon solida- ted Bottom	Bottom	Aquatic Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
	1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
1460.6	326.4	300.9	0.0	25.5	1134.2	14.5	411.1	434.4	0.0	274.2
1109.5	32.8	10.7	0.0	22.1	1076.7	0.0	387.7	420.5	0.0	268.5
419.2 690.3	10.0 22.8	9.7 1.0	-	0.3 21.8	409.2 667.5	-			-	58.1 210.4
351.1	293.6	290.2	0.0	3.4	57.5	14.5	23.4	13.9	0.0	5.7
203.7 26.2 21.7 99.2	171.4 15.1 19.0 87.8	168.4 14.9 18.8 87.8		3.0 0.2 0.2	32.3 11.1 2.7 11.4	7.8 _ 2.4 4.3	14.7 5.0 _ 3.7	9.8 1.2 _ 2.9		- 4.9 0.3 0.5
	Area 1460.6 1109.5 419.2 690.3 351.1 203.7 26.2 21.7	Area 1. 1460.6 326.4 1109.5 32.8 419.2 10.0 690.3 22.8 351.1 293.6 203.7 171.4 26.2 15.1 21.7 19.0	Total Area SUBTIDAL SUBTIDAL 1. solida- ted Bottom 1. 1.1 1460.6 326.4 300.9 1109.5 32.8 10.7 419.2 10.0 9.7 690.3 22.8 1.0 351.1 293.6 290.2 203.7 171.4 168.4 26.2 15.1 14.9 21.7 19.0 18.8	Total Area SUBTIDAL SUBTIDAL solida- ted Bottom Rock Bottom 1. 1.1 1.2 1460.6 326.4 300.9 0.0 1109.5 32.8 10.7 0.0 419.2 10.0 9.7 - 690.3 22.8 1.0 - 351.1 293.6 290.2 0.0 203.7 171.4 168.4 - 26.2 15.1 14.9 - 21.7 19.0 18.8 -	Solida- Area SOBTIDAL SUBTIDAL 1. solida- ted Bottom Rock Bottom Aquatic Bed 1. 1.1 1.2 1.3 1460.6 326.4 300.9 0.0 25.5 1109.5 32.8 10.7 0.0 22.1 419.2 10.0 9.7 - 0.3 690.3 22.8 1.0 - 21.8 351.1 293.6 290.2 0.0 3.4 203.7 171.4 168.4 - 3.0 26.2 15.1 14.9 - 0.2 21.7 19.0 18.8 - 0.2	Total Area SUBTIDAL 1. solida- ted Bottom Rock Bottom Aquatic Bed INTERTIDAL 1460.6 326.4 300.9 0.0 25.5 1134.2 1109.5 32.8 10.7 0.0 22.1 1076.7 419.2 10.0 9.7 - 0.3 409.2 690.3 22.8 1.0 - 21.8 667.5 351.1 293.6 290.2 0.0 3.4 57.5 203.7 171.4 168.4 - 3.0 32.3 26.2 15.1 14.9 - 0.2 11.1 21.7 19.0 18.8 - 0.2 2.7	Total Area SUBTIDAL 1. solida- ted Bottom Rock Bottom Aquatic Bed INTERTIDAL Shore 1. 1.1 1.2 1.3 2. 2.1 1460.6 326.4 300.9 0.0 25.5 1134.2 14.5 1109.5 32.8 10.7 0.0 22.1 1076.7 0.0 419.2 10.0 9.7 - 0.3 409.2 - 690.3 22.8 1.0 - 21.8 667.5 - 351.1 293.6 290.2 0.0 3.4 57.5 14.5 203.7 171.4 168.4 - 3.0 32.3 7.8 26.2 15.1 14.9 - 0.2 11.1 - 21.7 19.0 18.8 - 0.2 2.7 2.4	Total Area SUBTIDAL 1. solida- ted Bottom Rock Bottom Aquatic Bed INTERTIDAL Shore Flat 1460.6 326.4 300.9 0.0 25.5 1134.2 14.5 411.1 1109.5 32.8 10.7 0.0 22.1 1076.7 0.0 387.7 419.2 10.0 9.7 - 0.3 409.2 - 285.3 690.3 22.8 1.0 - 21.8 667.5 - 102.4 351.1 293.6 290.2 0.0 3.4 57.5 14.5 23.4 203.7 171.4 168.4 - 3.0 32.3 7.8 14.7 26.2 15.1 14.9 - 0.2 11.1 - 5.0 21.7 19.0 18.8 - 0.2 2.7 2.4 -	Total Area SUBTIDAL ted Bottom Rock ted Bottom Aquatic Bed INTERTIDAL INTERTIDAL Shore Flat Aquatic Bed 1. 1.1 1.2 1.3 2. 2.1 2.2 2.3 1460.6 326.4 300.9 0.0 25.5 1134.2 14.5 411.1 434.4 1109.5 32.8 10.7 0.0 22.1 1076.7 0.0 387.7 420.5 419.2 10.0 9.7 - 0.3 409.2 - 285.3 65.8 690.3 22.8 1.0 - 21.8 667.5 - 102.4 354.7 351.1 293.6 290.2 0.0 3.4 57.5 14.5 23.4 13.9 203.7 171.4 168.4 - 3.0 32.3 7.8 14.7 9.8 26.2 15.1 14.9 - 0.2 11.1 - 5.0 1.2 21.7 19.0 18.8 -<	Total Area SUBTIDAL betom Rock Aquatic Bottom Rock Aquatic Bed INTERTIDAL INTERTIDAL Shore Flat Aquatic Bed Beach/ Bar 1. 1.1 1.2 1.3 2. 2.1 2.2 2.3 2.4 1460.6 326.4 300.9 0.0 25.5 1134.2 14.5 411.1 434.4 0.0 1109.5 32.8 10.7 0.0 22.1 1076.7 0.0 387.7 420.5 0.0 419.2 10.0 9.7 - 0.3 409.2 - 285.3 65.8 - 690.3 22.8 1.0 - 21.8 667.5 - 102.4 354.7 - 351.1 293.6 290.2 0.0 3.4 57.5 14.5 23.4 13.9 0.0 203.7 171.4 168.4 - 3.0 32.3 7.8 14.7 9.8 - 26.2 15.1 14.9 - 0.2 <

80 siletz bay


ESTUARINE HABITAT SUMMARY

		AREA	PERCENT	ACRES	ACRES
HABITAT CI	LASS/	IN ACRES	OF	IN	IN
Code	Subclass		ESTUARY	EN	EC
ALL HABITZ	ATS	1460.6	100.0%	1109.5	351.1
and the second se	DATED BOTTOM				
1.1	Unspecified Type	300.9	20.6%	10.7	290.2
AQUATIC BE					
1.3.9	Seagrass	24.8	1.7%	22.1	2.7
1.3.10(6)	" on Cobble/Gravel	0.7	0.0%	-	0.7
			0000		007
SHORE					
2.1	Unspecified Type	6.0	0.4%	-	6.0
2.1.1	Sand	8.5	0.6%	-	8.5
FLAT					
2.2	Unspecified Type	42.7	2.9%	37.5	5.2
2.2.1	Sand	301.1	20.6%	282.9	18.2
2.2.3	Mud	67.3	4.6%	67.3	0.0
LOUISMIC DE	15.				
AQUATIC BE		24 5	2 20	20 6	2.9
2.3.9/10	Seagrass Seagrass/Algae	31.5 16.6	2.28 1.18	28.6 16.6	0.0
2.3.10	Algae	373.7	25.6%	373.5	0.0
2.3.10(1)		9.6	0.7%	-	9.6
2.3.10(6)	-	1.8	0.18	1.8	0.0
2.3.10(8)	" on Bedrock	1.2	0.1%	-	1.2
	our would own	1 - 2	0010		1.2
TIDAL MARS	H				
2.5.11	Low Salt Marsh	87.5	6.0%	84.9	2.6
2.5.12	High Salt Marsh	186.7	12.8%	183.6	3.1

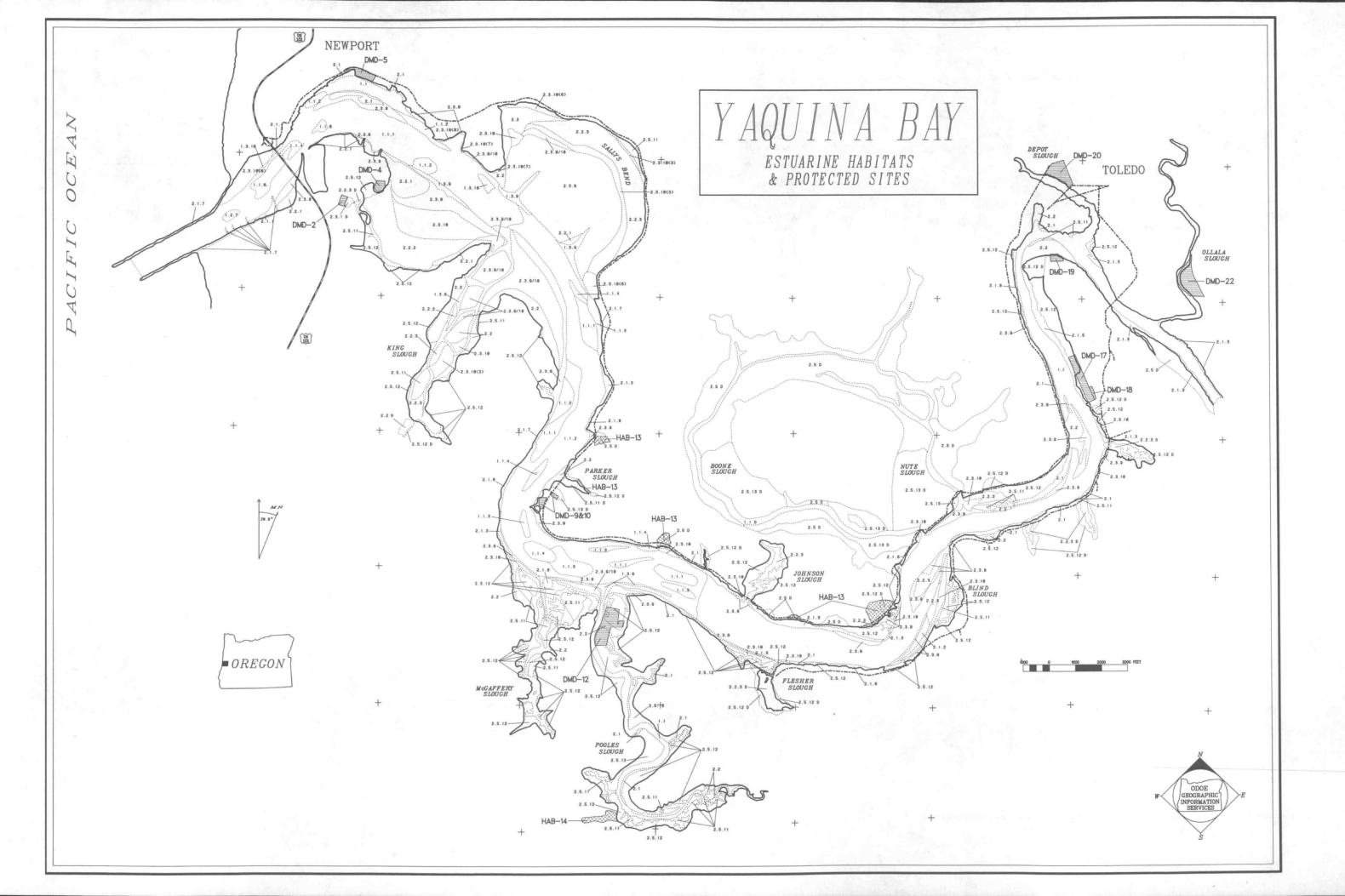
CODE	NAME/Comments		Size	Zone
DREDGED MAT	TERIAL DISPOSAL SITES	Capacity (Cubic Yards)		
DMD 1	SILETZ KEYS #1	10,000	3.5	RC
DMD 2	Needs to be diked prior SILETZ KEYS #2 Site is diked.	to utilization. 5,000	1.5	RC
SIGNIFICAN	HABITAT SITES			
HAB 21	OUTER SILETZ SPIT	Not Marca 2	0.0	PD
HAB 22	Snowy Plover nesting ar MILLPORT SLOUGH		115.0	AC20/40
HAB 23	Marsh Habitat and pigeo FUN RIVER WETLANDS Unmapped Freshwater wet areas filled for reside	land. Some	0.0	TC
MITIGATION	AND RESTORATION SITES			
MIT 1	MILLPORT SLOUGH/HAB 22 Remove tidegate at west or breach dikes at east as HAB-22. Not mapped	end. Same area	115.0	AC-40
WATER-DEPEN	IDENT DEVELOPMENT SITES			
WDD 1	KERNVILLE		0.0	MP
WDD 2	Moorage. MILLPORT SLOUGH		0 - 0	MP
WDD 3	River access. CHINOOK BEND		0.0	MP


Marina; not mapped.

SPECIAL SHORELAND SITES

HABITAT	CLASS	BY	MANAGEMENT	UNIT	
	(Area	in	Acres)		

Total Shore	Cotal Shoreland Area: 1861.0 acres				Uncon-											
					MANAGEMENT			solida-		Aquatic				Aquatic	Beach/	
		Area			CLASS	Total	SUBTIDAL	ted	Bottom	Bed	INTERTIDAL	Shore	Flat	Bed	Bar	Marsh
CLASS/Code	Zone	In Acres	% Shore	% Class	AND UNIT	Area		Bottom								2.5
							1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
URBAN		1013.1	54.4		TOTAL	4349.0	2003.1	1948.3	4.2	50.6	2345.9	194.9	612.3	917.7	0.0	621.0
																and a
C-2	General Commercial	43.2	2.3	4.3	NATURAL	2036.7	198.9	167.8	0.0	31.1	1837.8	37.9	502.7	705.8	0.0	591.4
I	Industrial	186.9	10.0	18.4												
11	Light Industrial	7.3	0.4	0.7	EN 9	602.3	21.2	16.3	-	4.9	581.1	-	236.3	258.2	-	86.6
13	Heavy Industrial/Office				EN 10	635.5	68.4	42.6	-	25.8	567.1	-	163.5	394.6	-	9.0
	Commercial	45.9	2.5	4.5	EN 15	0.1	0.0	-	-	-	0.1	-	0.1	-	-	
IP	Planned Industrial	29.1	1.6	2.9	EN 18	168.7	0.0	-	-	-	168.7	-	46.6	6.7	-	115.4
					EN 19	327.3	67.6	67.2	-	0.4	259.7	12.2	23.2	0.1	-	224.2
LI	Light Industrial	7.2	0.4	0.7	EN 20	47.0	0.0	-	-	-	47.0	0.9	16.1	-	-	30.0
M-P	Planned Marine	28.8	1.5	2.8	EN 21	39.4	8.8	8.8	-	-	30.6	7.9	-	8.0	-	14.7
NR	Natural Resource	119.1	6.4	11.8	EN 22	19.2	0.0	-	-	-	19.2	-	-	0.2	-	19.0
P-F	Public Facilities	38.7	2.1	3.8	EN 23	23.8	0.0	-	-	-	23.8	-	2.7	3.1	-	18.0
P1	Public Buildings & Structures	33.4	1.8	3.3	EN 24	100.7	30.4	30.4	-	-	70.3	15.0	14.2	33.3	-	7.8
					EN 27	30.3	0.0	-	-	-	30.3	-	-	-	-	30.3
P2	Public Recreation	62.1	3.3	6.1	EN 28	7.0	2.5	2.5	-	-	4.5	1.9	-	1.6	-	1.0
PL	Public Lands	12.4	0.7	1.2	EN 33	35.4	0.0	-	-	-	35.4	-	-	-	-	35.4
R-2	Low Density Residential	19.7	1.1	1.9												
R-4	High Density Residential	32.6	1.8	3.2												
R1	Low Density Residential	64.5	3.5	6.4	CONSERVATION	1301.1	899.2	882.7	-	16.5	401.9	113.0	64.2	198.5	0.0	26.2
RR-5	Rural Residential - 5	9.3	0.5	0.9	BC 1	65.3	36.9	35.8	-	1.1	28.4	0.5		27.9	-	-
W-1/WD	Water Dependent	91.8	4.9	9.1	EC 2	39.8	38.8	38.8	-	-	1.0	1.0	-	-	-	-
W-2	Water Related	163.0	8.8	16.1	EC 3	56.5	36.2	36.2	-	-	20.3	4.6	7.6		-	-
WD	Water Dependent	8.3	1.0	1.8	EC 6	108.6	83.5	83.5	-	-	25.1	5.7	-	19.4	-	-
					EC 8	132.3	73.1	64.1	-	9.0	59.2	-	9.5		-	-
					EC 13	89.1	67.4	67.4	-	-	21.7	5.2		10.3	-	6.2
RURAL		847.9	45.6		EC 16	221.9	177.1	177.1	-	-	44.8	30.0	-	14.8	-	
					EC 17	371.1	266.3	259.9	-	6.4	104.8	21.4	19.4		-	14.7
AC-40	Agriculture Conservation 40	123.8	6.7	14.6	EC 25	140.0	88.1	88.1	-	-	51.9	34.7	5.4		-	4.4
C-2	General Commercial	3.0	0.2	0.4	EC 30	76.5	31.8	31.8	-	-	44.7	9.9	22.3	11.6	-	0.9
M-P	Planned Marine	39.7	2.1	4.7												
NR	Natural Resource	27.6	1.5	3.3												2.4
R1	Residential Zone R-1	4.4	0.2	0.5	DEVELOPMENT	1011.2	905.0	897.8	4.2	3.0	106.2	44.0	45.4	13.4	0.0	3.4
RR-5	Rural Residential 5	173.1	9.3	20.4	ED 4	165.2	165.2	161.0	4.2	-	0.0	-	-	-	-	-
RR1-2	Rural Residential 1-2	111.0	6.0	13.1	BD 5	113.5	90.4	87.7	-	2.7	23.1	12.0	1.6	9.5	-	-
TC	Timber Conservation	365.3	19.6	43.1	KD 7	55.8	48.7	48.7	-	-	7.1	-	5.7	1.4	-	-
	sample completed				BD 12	373.3	372.0	371.7	-	0.3	1.3	-	0.2	0.9	-	0.2
					ED 14	131.5	114.2	114.2	-	-	17.3	8.8	6.9	1.6	-	-
					ED 31	111.4	93.8	93.8	-	-	17.6	10.6	5.3	-	-	1.7
					ED 32	60.5	20.7	20.7	-	-	39.8	12.6	25.7	-	-	1.5

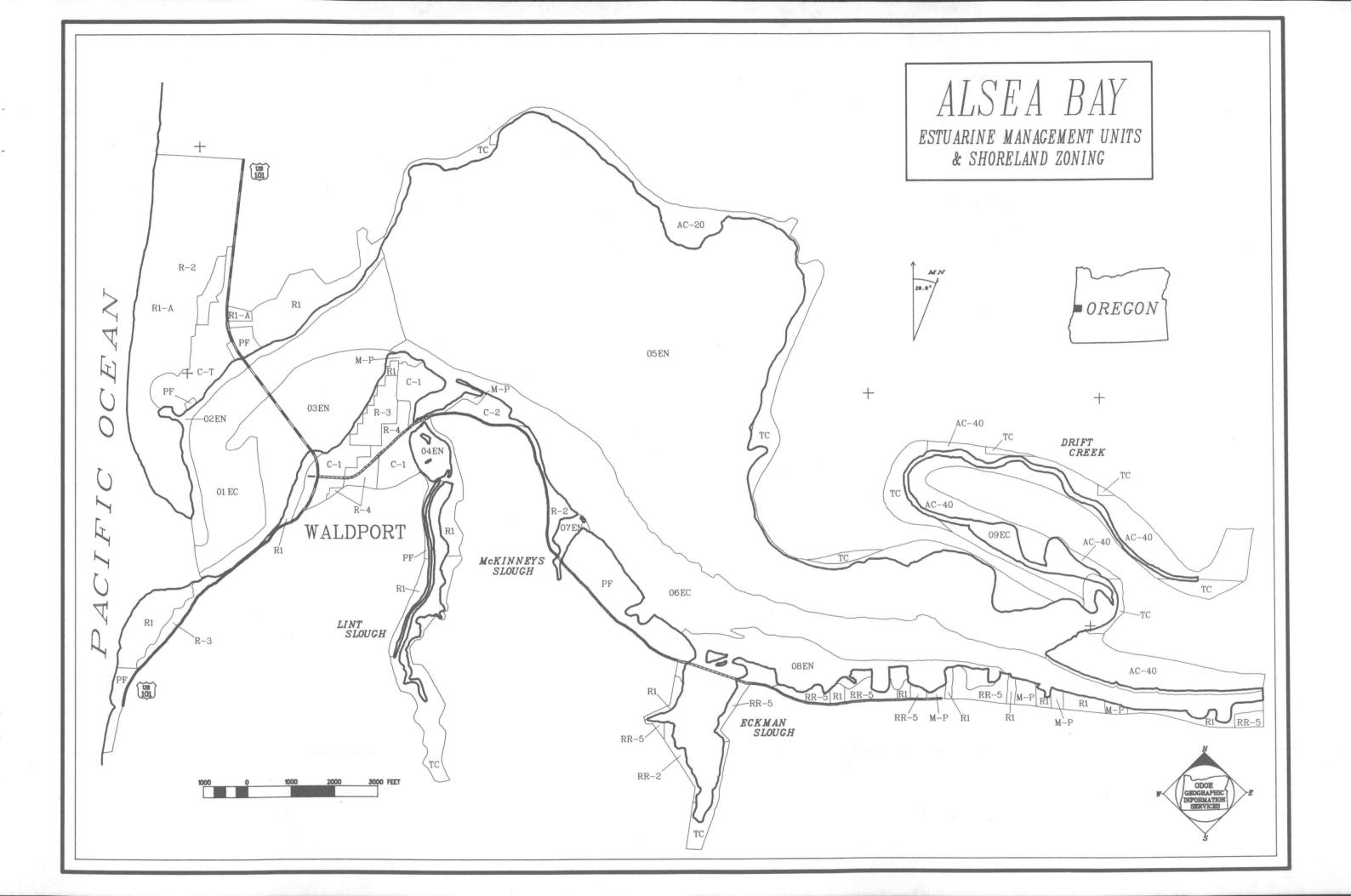


HABITAT CI	LASS/	AREA IN ACRES	PERCENT OF	ACRES	ACRES	ACRES IN
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABITZ	Ame	4349.0	100.0%	2036.7	1301.1	1011.2
	115	4349+0	100+04	2030.7	1501.1	1011.2
UNCONSOLII	DATED BOTTOM					
1.1	Unspecified Type	786.6	18.1%	108.9	324.1	353.6
1.1.1	Sand	537.8	12.4%	21.5	258.8	257.5
1.1.2	Sand/Mud (Mixed)	512.4	11.8%	37.4	245.9	229.1
1.1.3	Mud	53.2	1.28	-	38.0	15.2
1.1.4	Shell	34.6	0.8%	-	9.6	25.0
1.1.6	Cobble/Gravel	23.7	0.5%	-	6.3	17.4
ROCK BOTTO						
1.2.7	Boulder	4.2	0.1%	-	-	4.2
AQUATIC BE	3D					
1.3.9	Seagrass	44.7	1.0%	29.0	15.4	0.3
1.3.10	Algae	5.9	0.1%	2.1	1.1	2.7
SHORE						
2.1	Unspecified Type	78.8	1.8%	25.8	40.7	12.3
2.1.1	Sand	6.0	0.18	-	5.1	0.9
2.1.2	Sand/Mud (Mixed)	7.6	0.2%	-	7.6	-
2.1.3	Mud	56.0	1.3%	6.1	21.9	28.0
2.1.5	Wood Debris/Organic	23.5	0.5%	-	23.5	-
2.1.6	Cobble/Gravel	15.2	0.3%	6.0	9.2	-
2.1.7	Boulder	3.4	0.1%	-	2.3	1.1
2.1.8	Bedrock	4.4	0.18	-	2.7	1.7
FLAT						
2.2	Unspecified Type	264.4	6.1%	199.5	25.2	39.7
2.2.1	Sand	60.5	1.4%	37.7	17.1	5.7
2.2.2	Sand/Mud (Mixed)	111.1	2.6%	111.1	-	-
2.2.3	Mud	176.3	4.18	154.4	21.9	-
AQUATIC BE	D					
2.3.9	Seagrass	525.1	12.1%	377.6	137.4	10.1
2.3.9/10	Seagrass/Algae	152.4	3.5%	136.9	14.1	1.4
2.3.10	Algae	125.4	2.9%	106.3	19.1	-
2.3.10(3)	Algal on Mud	65.9	1.5%	65.9	-	-
2.3.10(6)	" on Cobble/Gravel	18.6	0.48	18.6	-	-
2.3.10(7)	" on Boulder	1.8	0.0%	0.5	-	1.3
2.3.10(8)	" on Bedrock	28.5	0.7%	-	27.9	0.6
TIDAL MARS	H					
2.5.11	Low Salt Marsh	143.8	3.3%	136.1	5.1	2.6
2.5.12	High Salt Marsh	475.3	10.9%	453.4	21.1	0.8
2.5.13	Fresh Marsh	1.9	0.0%	1.9	-	-

SPECIAL SHORELAND SITES

CODE	NAME/Comments	Size	Zone
		(In Acres)	
DREDGED	MATERIAL DISPOSAL SITES Capaci	ty	
	(Cubic Ya	rds)	
DMD 10	RIVERBEND MOORAGE 6,20	1.2	MP
	Site locates south of moorage.		
DMD 12	NEWPORT PACIFIC 26,00	1.9	MW
DMD 17	TOLEDO AIRPORT WEST 66,00	12.0	MP
DMD 18	TOLEDO AIRPORT EAST 25,00	1.6	RR
DMD 19	TOLEDO 68,00	0 5.0	MP
DMD 2	SOUTH BEACH MARINA 25,00	0 5.0	W2
DMD 20	DEPOT SLOUGH 80,00	10.0	I
	Site is partly owned by Georgia-Pacif.	ic.	
DMD 22	OLALLA CREEK 110,00	0 14.0	NR
DMD 4	MARINE SCIENCE CENTER 30,00	0 1.0	W2
DMD 5	NEWPORT DOCKS 20,00	0 4.0	W1
	Site includes an undesignated DMD are	a zoned MU-5 which	L .
	has an approximate capacity of 30,000		
DMD 9	RIVERBEND MOORAGE 16,20		MP
	Site located east of the road.		
SIGNIFIC	CANT HABITAT SITES		
HAB 13	NORTH BAY WETLANDS	16.0	TC
	Five small freshwater wetlands closel	У	
	associated with the estuary.		
	_		
HAB 14	POOLE'S SLOUGH	6.0	TC
нав 14	POOLE'S SLOUGH Non-tidal marsh, riparian forest.	6.0	TC
	Non-tidal marsh, riparian forest.	6.0	TC
MITIGAT	Non-tidal marsh, riparian forest.		
MITIGATI	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES	aps. See the Unma	pped Si
MITIGAT (Mitigat section	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a	aps. See the Unma	pped Si
MITIGATI	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a	aps. See the Unma	pped Si
MITIGAT (Mitigat section Yaquina	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a	aps. See the Unma	pped Si
MITIGAT (Mitigat section Yaquina	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) SPENDENT DEVELOPMENT SITES	aps. See the Unma and restoration si	pped Si tes in
MITIGAT (Mitigat section Yaquina WATER-DI	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.)	nps. See the Unma and restoration si 0.0	pped Si tes in MP
MITIGAT (Mitigat section Yaquina	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) SPENDENT DEVELOPMENT SITES	nps. See the Unma and restoration si 0.0 0.0	pped Si tes in MP
MITIGAT (Mitigat section Yaquina WATER-DI WDD 2	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch)	nps. See the Unma and restoration si 0.0 0.0 11.0	pped Si tes in MP MP
MITIGAT (Mitigat section Yaquina WATER-DI WDD 2 WDD 3	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) SPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE	ops. See the Unma and restoration si 0.0 0.0 11.0 0.0	pped Si tes in MP MP MP
MITIGATI (Mitigat section Yaquina WATER-DI WDD 2 WDD 3 WDD 4	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch)	ops. See the Umma and restoration si 0.0 0.0 11.0 0.0 0.0 0.0	pped Si tes in MP MP MP
MITIGATI (Mitigat section Yaquina WATER-DI WDD 2 WDD 2 WDD 3 WDD 4 WDD 5	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on main in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access)	nps. See the Unma and restoration si 0.0 0.0 11.0 0.0 0.0 1.0	pped Si tes in MP MP MP WP W1 WD
MITIGAT (Mitigat section Yaquina WATER-DI WDD 2 WDD 2 WDD 3 WDD 4 WDD 5 WDD A WDD A	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on main in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN	pps. See the Unma and restoration si 0.0 0.0 11.0 0.0 0.0 1.0 0.0	pped Si tes in MP MP MP WP W1 WD
MITIGAT (Mitigat section Yaquina WATER-DI WDD 2 WDD 2 WDD 3 WDD 4 WDD 5 WDD A	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN TROYER BOAT WORKS MCLEAN POINT (Sunset Terminals)	pps. See the Unma and restoration si 0.0 0.0 11.0 0.0 1.0 0.0 1.0 0.0 0.0 0.	pped Si tes in MP MP MP MP W1 W1
MITIGATI (Mitigat section Yaquina WATER-DI WDD 2 WDD 3 WDD 3 WDD 4 WDD 5 WDD A WDD A WDD A	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on ma in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN TROYER BOAT WORKS MCLEAN POINT (Sunset Terminals)	ps. See the Unma and restoration si 0.0 0.0 11.0 0.0 1.0 0.0 1.0	pped Si tes in MP MP MP WD W1 WD
MITIGATI (Mitigat section Yaquina WATER-DI WDD 2 WDD 3 WDD 3 WDD 4 WDD 5 WDD 4 WDD 5 WDD A WDD B WDD B	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on main in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN TROYER BOAT WORKS MCLEAN POINT (Sunset Terminals) TOKYO SLOUGH (Industrial/Mill Operati	pps. See the Unma and restoration si 0.0 0.0 11.0 0.0 1.0 0.0 1.0 0.0 0.0 0.	pped Si tes in MP MP MP W1 WD W1 WD W1
MITIGATI (Mitigat section Yaquina WATER-DI WDD 2 WDD 3 WDD 4 WDD 4 WDD 4 WDD 5 WDD A WDD A WDD A WDD B WDD B/C WDD C	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on main in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN TROYER BOAT WORKS MCLEAN POINT (Sunset Terminals) TOKYO SLOUGH (Industrial/Mill Operati MARINE SCIENCE CENTER	0.0 0.0 0.0 11.0 0.0 1.0 0.0 1.0 0.0 0.0	pped Si
MITIGATI (Mitigat section Yaquina WATER-DI WDD 2 WDD 2 WDD 3 WDD 4 WDD 4 WDD 4 WDD 5 WDD A WDD A WDD A WDD B WDD B/C WDD C WDD D	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on main in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN TROYER BOAT WORKS MCLEAN POINT (Sunset Terminals) TOKYO SLOUGH (Industrial/Mill Operati MARINE SCIENCE CENTER PORT DOCK	0.0 0.0 0.0 11.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0	pped Si tes in MP MP MP W1 WD W1 WD W1 PL
MITIGATI (Mitigat section Yaquina WATER-DH WDD 2 WDD 3 WDD 4 WDD 4 WDD 4 WDD 5 WDD A WDD A WDD A WDD B WDD B/C WDD C WDD D WDD E	Non-tidal marsh, riparian forest. CON AND RESTORATION SITES tion and Restoration sites are not shown on main in the Appendix for a listing of mitigation a Bay.) EPENDENT DEVELOPMENT SITES COQUILLE POINT (Bay Access) CRITESER MOORAGE TOLEDO AIRPORT (Boat Launch) ST. CLAIR PROPERTY (River Access) NEWPORT BOAT BASIN TROYER BOAT WORKS MCLEAN POINT (Sunset Terminals) TOKYO SLOUGH (Industrial/Mill Operati MARINE SCIENCE CENTER PORT DOCK FIEBER FARM (Moorage)	0.0 0.0 0.0 11.0 0.0 11.0 0.0 0	pped Si tes in MP MP MP W1 WD W1 WD W1 PL

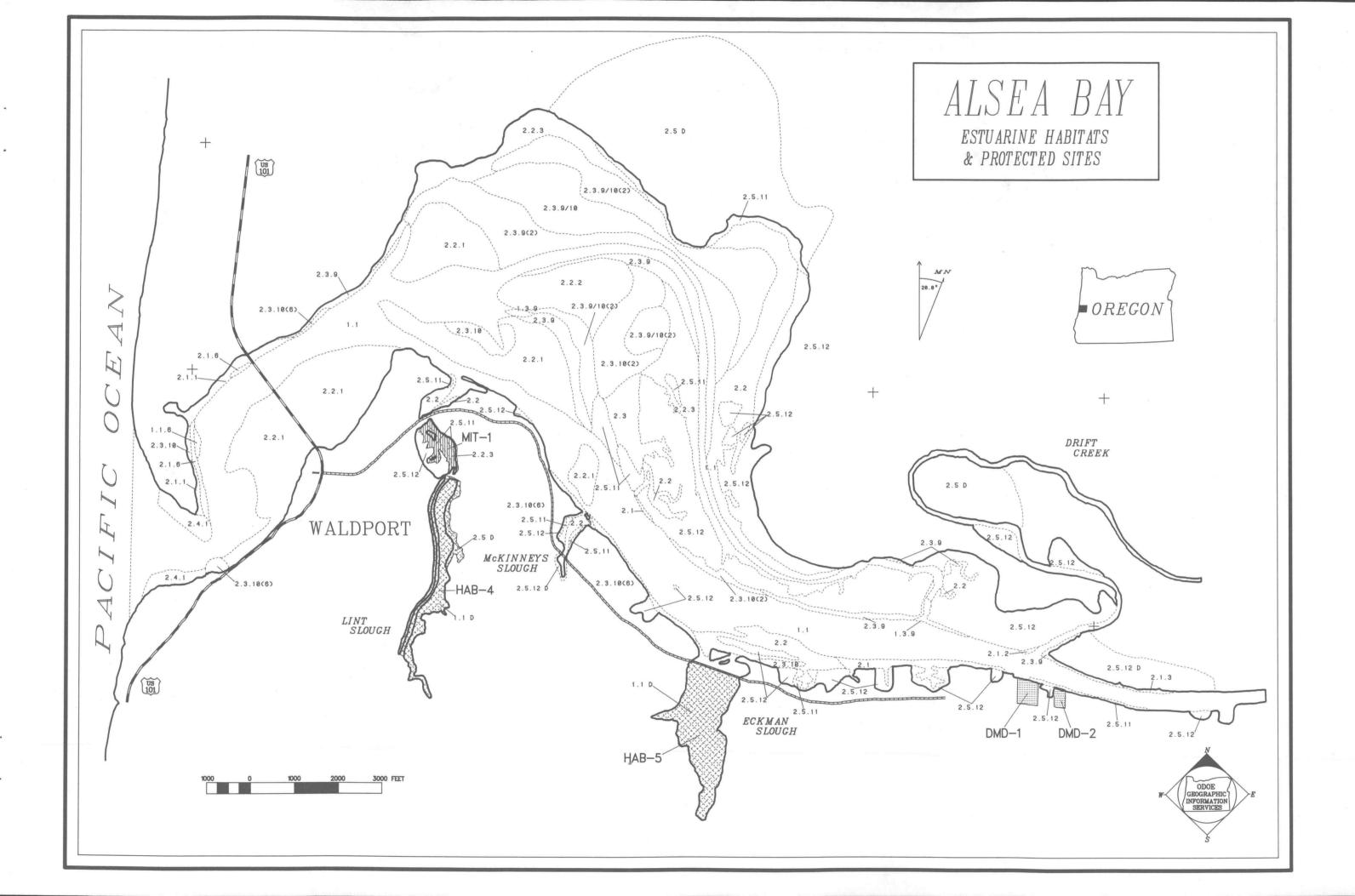
.


HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

.

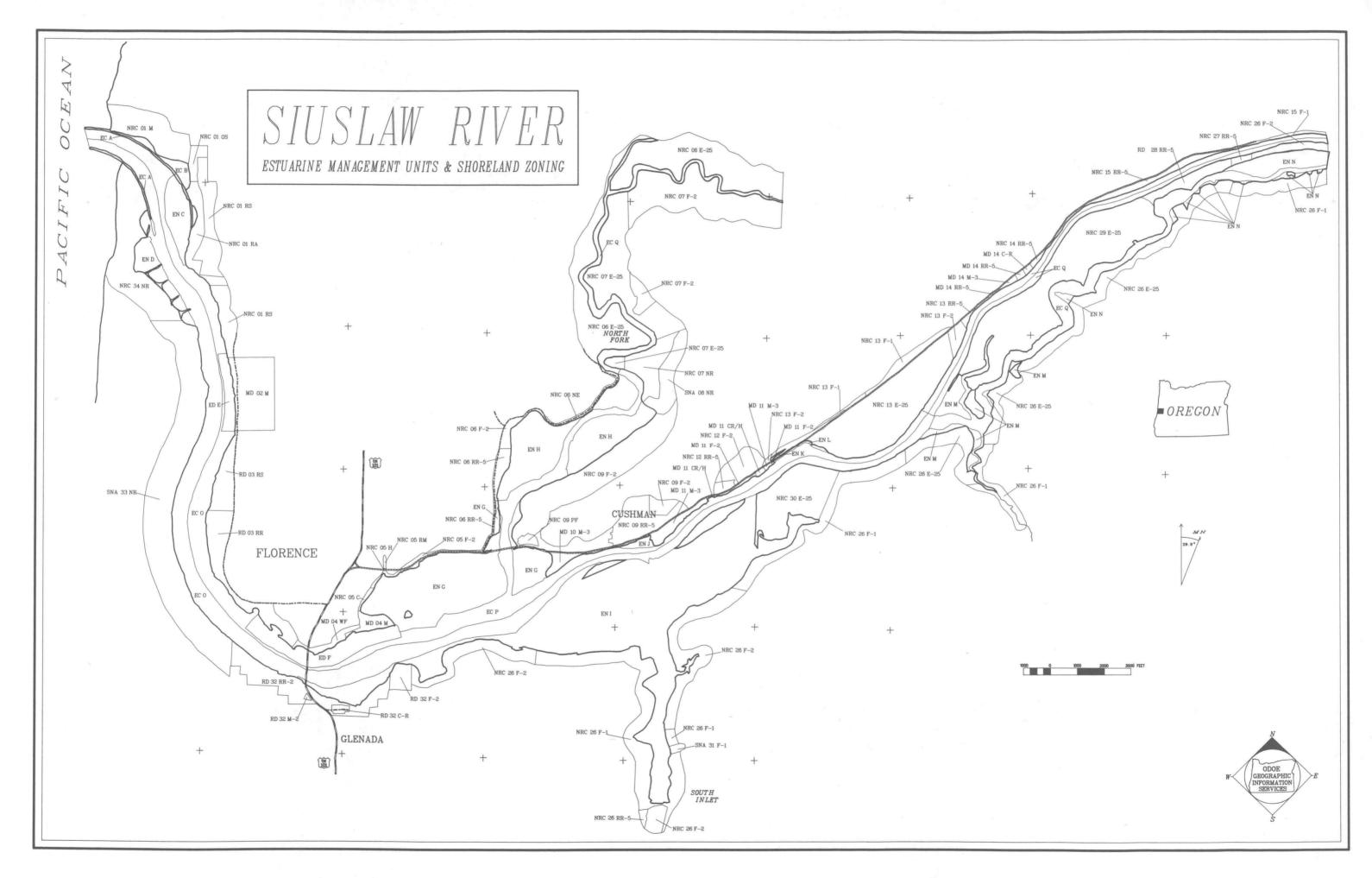
Total Shoreland Area: 1308.3 acres

		Area		
CLASS/Code	Zone	In Acres	<pre>%Shore</pre>	%Class
URBAN		654.6	50.0	
C-1	Retail Commercial	68.5	5.2	10.5
C-2	General Commercial	15.1	1.2	2.3
C-T	Tourist Commercial	54.5	4.2	8.3
M-P	Planned Marine & Recreation	8.2	0.6	1.2
PF	Public Facilities	24.9	1.9	3.8
R-2	Residential R-2	26.6	2.0	4.1
R-3	Residential R-3	34.5	2.6	5.3
R-4	Residential R-4	22.7	1.7	3.5
R1	Residential R-1	136.9	10.5	20.9
R1-A	Residential R-1A	262.7	20.1	40.1
RURAL		653.7	50.0	
AC-20	Agricultural Conservation	50.6	3.9	7.7
AC-40	Agricultural Conservation	212.5	16.2	32.5
M-P	Planned Marine	14.2	1.1	2.2
PF	Public Facilities	68.1	5.2	10.4
R1	Residential Zone R-1	43.5	3.3	6.7
R1-A	Residential Zone R-1-A	1.0	0.1	0.2
RR-2	Rural Residential 1-2	7.6	0.6	1.2
RR-5	Rural Residential 5	47.0	3.6	7.2
TC	Timber Conservation	209.3	16.0	32.0


MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom	Rock Bottom	Aquatic Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
		1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
TOTAL	2515.9	734.4	728.8	0.0	5.6	1781.5	43.9	715.1	558.3	4.0	460.2
NATURAL	1843 . 1	162.1	159.0	0.0	3.1	1681.0	43.4	665.6	542.1	4.0	425.9
EN 2	39.4	0.7	0.7	-	-	38.7	24.2	1.0	9.5	4.0	-
EN 3	161.2	0.3	0.3	-	-	160.9	-	158.2	2.7	-	-
EN 4	18.6	0.0		-	-	18.6	-	4.4	-	-	14.2
EN 5	1522.4	156.3	153.2	-	3.1	1366.1	1.2	461.4	525.7	-	377.8
EN 7	9.4	0.0	-	-	-	9.4	-	6.0	-	-	3.4
EN 8	92.1	4.8	4.8	-	-	87.3	18.0	34.6	4.2	-	30.5
CONSERVATION	672.8	572.3	569.8	0.0	2.5	100.5	0.5	49.5	16.2	0.0	34.3
BC 1	208.9	180.0	180.0	-	-	28.9	-	28.0	0.9	-	-
EC 6	406.0	354.5	352.0	-	2.5	51.5	0.5	21.5	15.3	-	14.2
BC 9	57.9	37.8	37.8	-	-	20.1	-	-	· -	-	20.1

		AREA	PERCENT	ACRES	ACRES
HABITAT CI		IN ACRES	OF	IN	IN
Code	Subclass		ESTUARY	EN	EC
ALL HABITA	ATS	2515.9	100.0%	1843.1	672.8
UNCONSOLII	DATED BOTTOM				
1.1	Unspecified Type	727.1	28.9%	158.9	568.2
1.1.6	Cobble/Gravel	1.7	0.1%	0.1	1.6
AQUATIC BE	3D				
1.3.9	Seagrass	5.6	0.28	3.1	2.5
SHORE					
2.1	Unspecified Type	18.9	0.8%	18.8	0.1
2.1.1	Sand	17.6	0.7%	17.6	-
2.1.2	Sand/Mud (Mixed)	0.8	80.0	0.4	0.4
2.1.6	Cobble/Gravel	6.6	0.3%	6.6	-
FLAT					
2.2	Unspecified Type	159.2	6.3%	151.9	7.3
2.2.1	Sand	347.1	13.8%	304.9	42.2
2.2.2	Sand/Mud (Mixed)	70.7	2.8%	70.7	-
2.2.3	Mud	138.1	5.5%	138.1	-
AQUATIC BE	D				
2.3	Unspecified Type	31.4	1.2%	31.4	-
2.3.9	Seagrass	64.7	2.6%	62.3	2.4
2.3.9(2)	Seagrass on Sand/Mud	100.3	4.0%	100.3	-
2.3.9/10(2)Seagrass & Algae, Sand/Mud	1 156.1	6.2%	156.1	-
2.3.10	Algae	19.6	0.8%	19.6	-
2.3.10(2)	Algae on Sand/Mud	171.3	6.8%	167.5	3.8
2.3.10(6)	Algae on Cobble/Gravel	14.9	0.6%	4.9	10.0
BEACH/BAR					
2.4.1	Sand	4.0	0.2%	4.0	-
TIDAL MARS	н				
2.5.11	Low Salt Marsh	57.4	2.3%	52.9	4.5
2.5.12	High Salt Marsh	402.8	16.0%	373	29.8

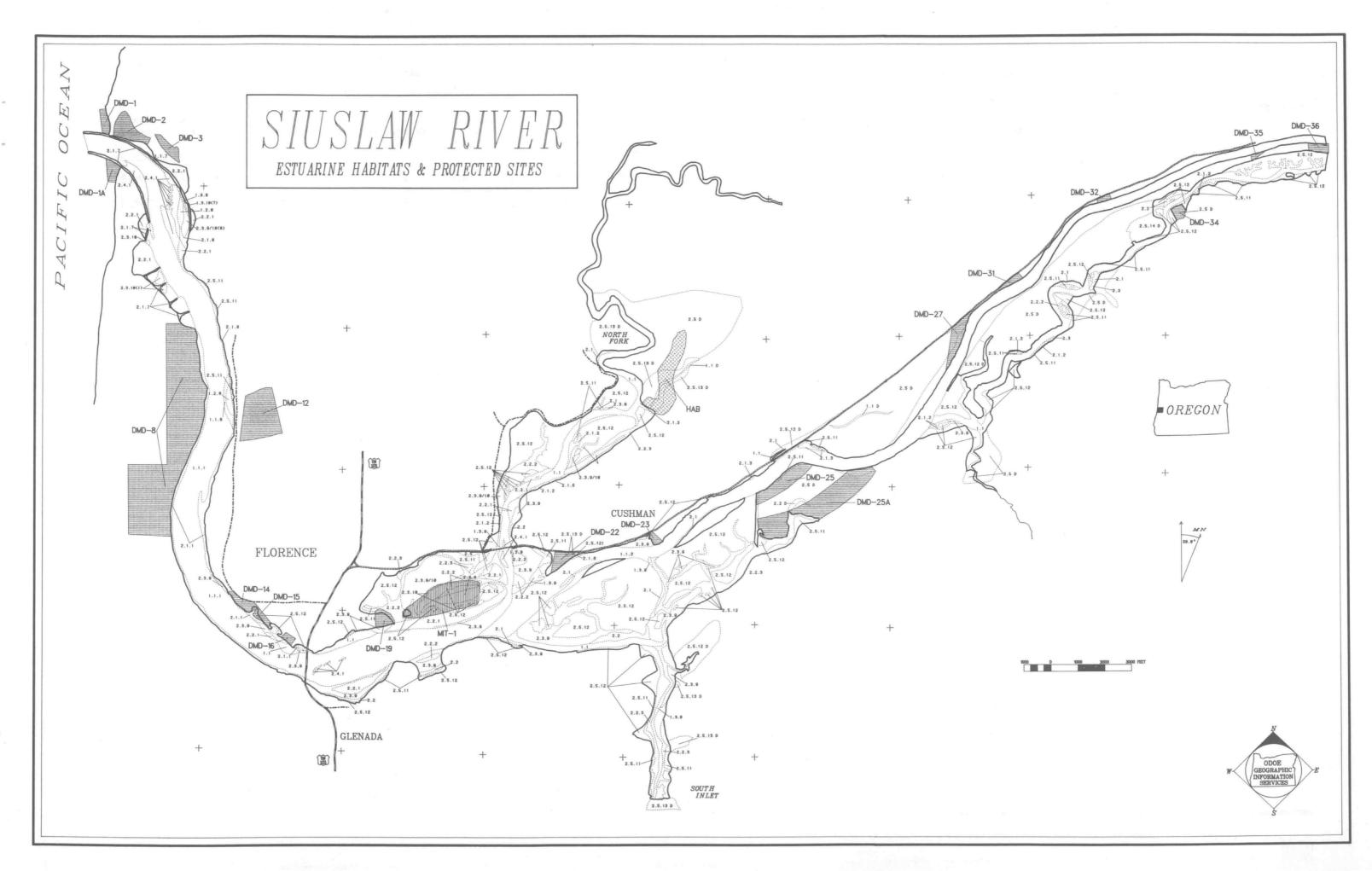
CODE	NAME/Comments		Size	Zone
			(Acres)	
DREDGED MA	TERIAL DISPOSAL SITES	Capacity		
		(Cubic Yards)		
DMD 1	KING SILVER MOORAGE	50,000	6.1	MP
DMD 2	FISHIN' HOLE MARINA	6,000	2.7	MP
SIGNIFICAN	T HABITAT SITES			
HAB 4	LINT SLOUGH		46.5	TC
IAB 5	Impounded coastal lake. ECKMAN SLOUGH		70.0	8EN
LAB J	Impounded coastal lake.		70.0	OBN
ITIGATION	AND RESTORATION SITES			
11T 1	LINT SLOUGH		11.4	4 EN
AIT 5	Remove dam and tidegate BARCLAY MEADOWS	<u>.</u>	70.0	AC-4
MIT 5	Remove or breach dikes	Not mapped.	70.0	ne 4
WATER-DEPE	NDENT DEVELOPMENT SITES			
VDD 1	BAYSHORE PARK			PF
DD 2	Wayside/ Launch ALSEA BAY MARINAS			MP
	Recreational Access			
VDD 3	KITTEL SITE Suitablle for water-der	endent use. Not mapped		MP
VDD 4	TAYLOR'S LANDING			MP
NDD 5	Recreational Access. N KOZY KOVE MARINA	Not mapped.		MP
	Recreational moorage.	Not mapped.		
IDD 6	PORT DOCKS Backup land for port ad	tivities.	2.0	MP
DD 7	MCKINLEY MARINA		3.0	MP
	Reserved for waterfront	t development.		


SPECIAL SHORELAND SITES

Total Shoreland Area: 3651.0 acres

HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

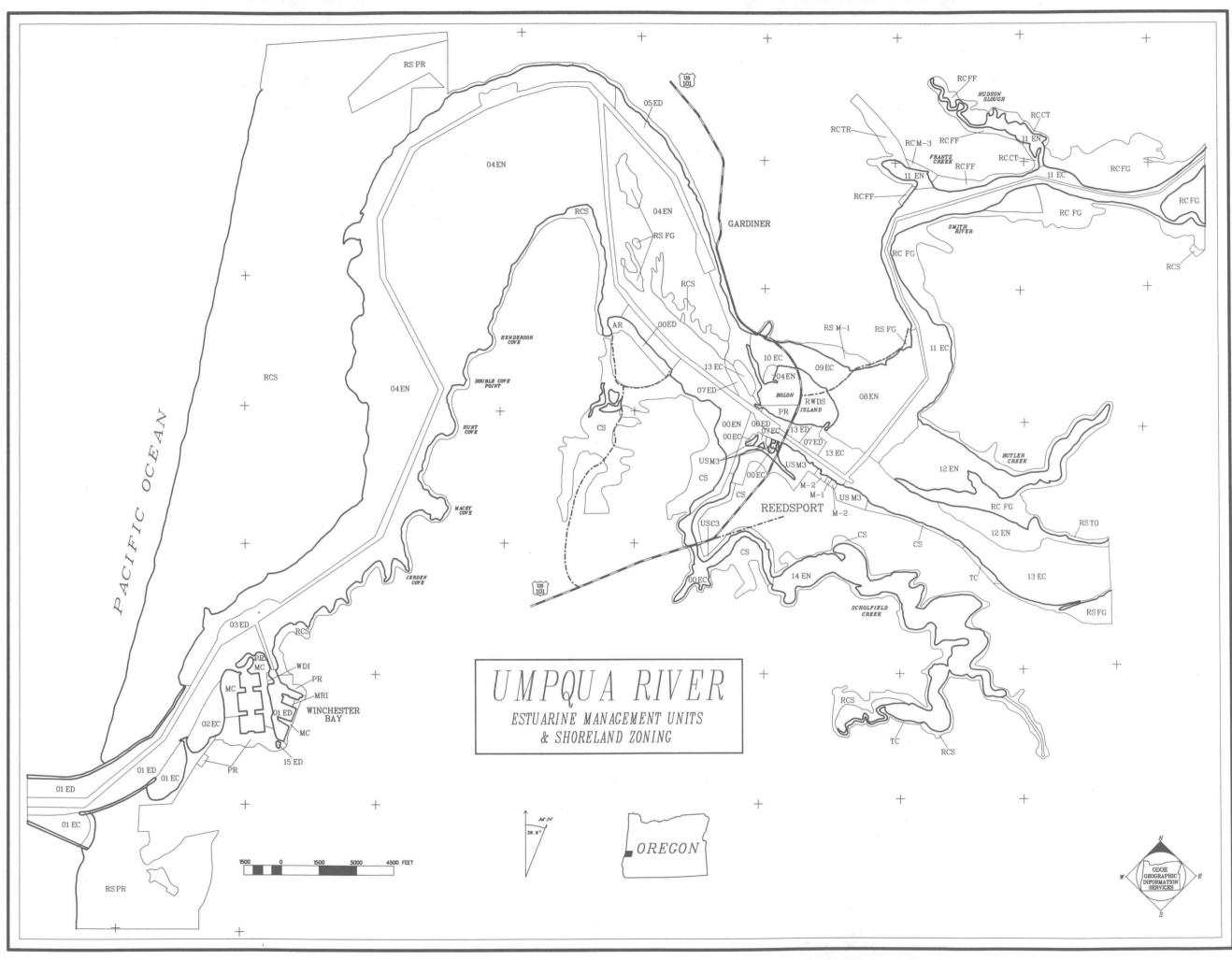
Total Shore	eland Area: 3651.0 acres							Uncon-								
					MANAGEMENT			solida-		Aquatic				Aquatic	Beach/	Tidal
	_	Area			CLASS	Total	SUBTIDAL	ted	Bottom	Bed	INTERTIDAL	Shore	Flat	Bed	Bar	Marsh
CLASS/Code	Zone	In Acres	% Shore	% Class	AND UNIT	Area		Bottom	4.0	4.2	2.	2.1		2.2	2.4	2.5
							1.	1.1	1.2	1.3	۷.	2.1	2.2	2.3	2.4	2.5
URBAN		476.0	13.0	51	TOTAL	3060.4	1441.6	1426.5	8.8	6.3	1618.8	134.6	358.0	331.6	30.5	764.1
С	Commercial District	2.5	0.1	0.5	NATURAL	1485.2	99.9	89.7	4.4	5.8	1385.3	27.7	311.8	311.5	14.0	720.3
F-2	Impacted Forest Lands	10.2	0.3	2.1										1.		
н	Highway District	3.2	0.1	0.7	EN C	52.7	20.5	13.5	4.4	2.6	32.2	7.8	5.5	4.9	14.0	-
M	Marine District	190.7	5.2	40.1	END	46.1	0.0	-	-	-	46.1	3.5	38.3	4.3	-	-
OS	Open Space District	12.9	0.4	2.7	EN G	296.2	3.6	0.4	-	3.2	292.6	0.8	73.4	125.8	-	92.6
					EN H	225.6	2.7	2.7	-	-	222.9	8.2	47.3	16.0	-	151.4
RA	Suburban Residential	39.8	1.1	8.4	EN I	746.7	62.0	62.0	-	-	684.7	5.8	147.3	154.1	-	377.5
RM	Multiple Family Residential	1.1	0.0	0.2	EN J	7.6	0.0	-	-	-	7.6	-	-	6.4	-	1.2
RR	Restricted Residential	74.6	2.0	15.7	BN K	0.8	0.8	0.8	-	-	0.0	-	-	-	-	-
RS	Single Family Residential	128.2	3.5	26.9	EN L	2.6	0.0	- 1	-	-	2.6	1.6	-	-	-	1.0
WF	Waterfront District	12.8	0.4	2.7	EN M	42.4	0.0	-	-	-	42.4	-	-	-	-	42.4
					EN N	64.5	10.3	10.3	-	-	54.2	-	-	-	-	54.2
RURAL		3175.0	87.0													
					CONSERVATION	1466.3	1257.4	1256.9	0.0	0.5	208.9	100.8	42.8	10.7	16.2	38.4
C-R	Rural Commercial	6.4	0.2	0.2												
CR/H	Rural Commercial/ Historic	2.3	0.1	0.1	BC A	12.6	0.0	-	-	-	12.6	12.6	-	-	-	-
B-25	Exclusive Farm Use - 25	1304.3	35.7	41.1	BC B	18.0	0.0	-	-	-	18.0	-	-	-	-	18.0
F-1	Nonimpacted Forest Lands	338.9	9.3	10.7	EC O	530.5	481.1	481.1	-	-	49.4	30.0	7.9		11.5	-
F-2	Impacted Forest Lands	645.4	17.7	20.3	EC P	491.8	413.2	412.7	-	0.5	78.6	34.7	27.8		4.7	2.9 17.5
					EC Q	413.4	363.1	363.1	-	-	50.3	23.5	7.1	2.2	-	17.5
M-2	Light Industrial	0.8	0.0	0.0												
M-3	Heavy Industrial	38.6	1.1	1.2	DESTRICT OPAGEMENT	100.0	04.2	70.0			24.6	<i>c</i> 4	2.4	0.4	0.3	5 4
NR	Natural Resource	572.8	15.7	18.0	DEVELOPMENT	108.9	84.3	79.9	4.4	0.0	24.6	6.1	3.4	9.4	0.3	5.4
· PF	Public Facility	5.6	0.2	0.2		05 0		46 -			4.5	2.4				
RR-2	Rural Residential 2	89.4	2.4	2.8	ED E	25.3	21.1	16.7		-	4.2	3.1	-	_	0.3	1.1
		460 5			BD F	83.6	63.2	63.2	-	-	20.4	3.0	3.4	9.4	0.3	4.3
RR-5	Rural Residential 5	160.7	4.4	5.1												


SPECIAL	SHORELAND
---------	-----------

HABITAT C	LASS/	AREA IN ACRES	PERCENT	ACRES	ACRES	ACRES IN
Code	Subclass	IN HOLDD	ESTUARY	EN	EC	ED
ALL HABIT		3060.4	100.0%	1485.2	1466.3	108.9
the second second second second second	DATED BOTTOM					
1.1	Unspecified Type	346.5	11.3%	63.8	264.8	17.9
1.1.1	Sand	682.1	22.3%	20.6	604.8	56.7
1.1.2	Sand/Mud (Mixed)	392.6	12.8%	5.3	387.3	-
1.1.6	Cobble/Gravel	5.3	0.28	-	-	5.3
ROCK BOTTO	MC					
1.2.8	Bedrock	8.8	0.38	4.4	-	4.4
AQUATIC BI	SD					
1.3.9	Seagrass	6.3	0.28	5.8	0.5	-
SHORE						
2.1	Unspecified Type	18.9	0.6%	6.2	12.7	-
2.1.1	Sand	51.2	1.7%	-	48.2	3.0
2.1.2	Sand/Mud (Mixed)	22.7	0.78	8.4	14.3	-
2.1.3	Mud	4.6	0.2%	1.8	2.8	-
2.1.6	Cobble/Gravel	0.9	0.0%	-	0.9	-
2.1.7	Boulder	22.0	0.7%	6.8	15.2	-
2.1.8	Bedrock	14.3	0.5%	4.5	6.7	3.1
FLAT						
2.2	Unspecified Type	21.9	0.7%	18.7	3.2	-
2.2.1	Sand	140.0	4.6%	83.3	53.3	3.4
2.2.2	Sand/Mud (Mixed)	79.8	2.6%	75.9	3.9	-
2.2.3	Mud	134.3	4.48	133.9	0.4	-
AQUATIC BE						
2.3	Unspecified Type	1.5	0.0%	-	1.5	-
2.3.9	Seagrass	242.8	7.9%	226.1	7.3	9.4
2.3.9/10	Seagrass/Algae	67.5	2.28	65.6	1.9	-
2.3.10	Algae	16.2	0.5%	16.2	-	-
2.3.10(1)	" on Sand	3.6	0.1%	3.6	-	-
BEACH/BAR						
2.4.1	Sand	30.5	1.0%	14.0	16.2	0.3
TIDAL MARS	and the second					
2.5	Unspecified Type	4.7	0.2%	4.7	-	-
2.5.11	Low Salt Marsh	57.8	1.9%	49.3	7.4	1.1
2.5.12	High Salt Marsh	683.6	22.3%	666.3	13.0	4.3

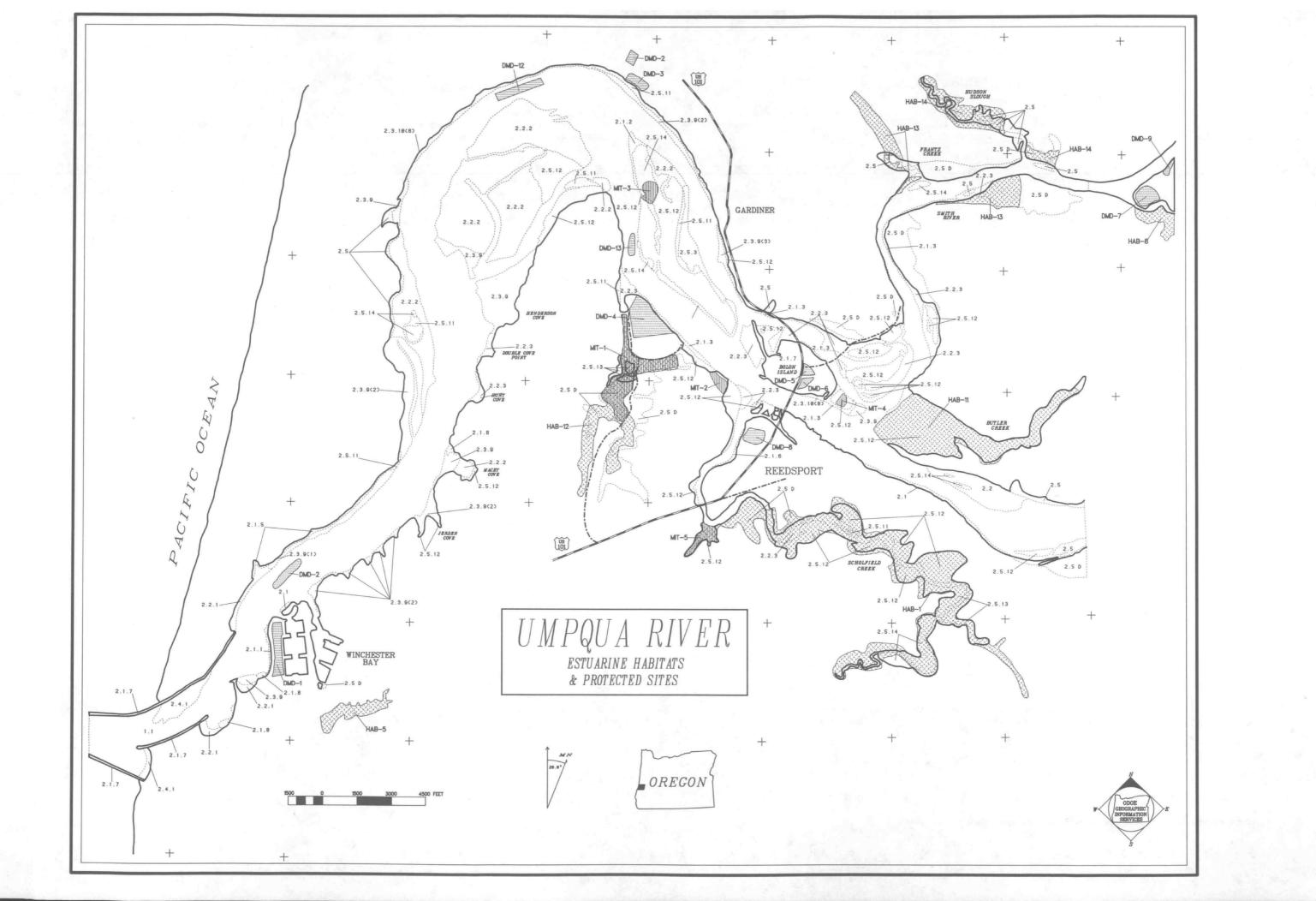
the second s

	NAME/Comments		Size	Zone
DRRDCR	D MATERIAL DISPOSAL SITES	Capacity	(In Acres)	
DIGDOL	THIBICILL DIDIONILL DITED	(Cubic Yards)		
DMD 1	NORTH JETTY	80,000	8.5	/NRC
DMD 12	COUNTY LANDFILL	42,200	2.6	M
DMD 14	FLORENCE TREATMENT	22,700	3.0	RR
	PLANT WEST			
DMD 15	FLORENCE TREATMENT	59,400	4.5	RR
	PLANT SOUTH			
	Other tax lots owned by			
DMD 16	BAY BRIDGE MARINA	7,400	2.5	RR
DMD 19	WATERLAND STORAGE	50,000	8.5	M
DMD 1A	SOUTH JETTY	70,000	7.5	NR/NR
DMD 2	NORTH JETTY ROAD	185,000	12.5	NRC
	LOCATED SOUTH OF THE ROA			
DMD 22	JOHNSON ROCK	130,000	9.0	M3
DMD 23	MURPHY MILL	10,400	2.5	M3
DMD 25	CUSHMAN 1	970,000	18.0	E25
DMD 25		970,000	70.0	F1
DMD 27	CUSHMAN 3	160,400	10.5	F2
OMD 3	NORTH JETTY ROAD	105,000	9.5	/NRC
24	LOCATED NORTH OF ROAD	46 270	2 5	242
DMD 31	MIDWAY DOCK	16,370	2.5	M3
DMD 32	MIDWAY DOCKS EAST WEST OF DUNCAN SLOUGH	9,300	2.5	RR5
JMD 34	BRIDGE	43,500	2.4	E25
DMD 35	DUNCAN ISLAND MIDDLE	26,700	2.8	F2
DMD 36	DUNCAN ISLAND NORTH	36,300	5.6	F2
	DONOMIA LOUMAD MORTH	the second se		
	DUNES	3,465,000	143.2	NK
	DUNES	3,465,000	143.2	NR
8 DMD			143.2	NK
DMD 8	CANT HABITAT SITES (All unma	pped)	143•2	
MAD 8 SIGNIF: HAB 1	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne	pped)		F
8 DMD	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST	pped) ests)		
DMD 8 SIGNIF: HAB 1 HAB 2	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's	pped) ests)		F
OMD 8 SIGNIF: HAB 1 HAB 2 HAB 3	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT	pped) ests) plan by section onl		F
DMD 8 SIGNIF: HAB 1	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's	pped) ests) plan by section onl		F
DMD 8 SIGNIF HAB 1 HAB 2 HAB 3 HAB 4	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT	pped) ests) plan by section onl		F
DMD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER	pped) ests) plan by section onl	 	F F
DMD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA	CANT HABITAT SITES (All unman HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER TION AND RESTORATION SITES NORTH FORK ISLANDS	pped) ests) plan by section onl RING AREA		F
DMD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER TION AND RESTORATION SITES NORTH FORK ISLANDS Remove sand to create i	pped) ests) plan by section onl RING AREA	 	F F
DMD 8 SIGNIF HAB 1 HAB 2 HAB 3 HAB 4	CANT HABITAT SITES (All unman HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER TION AND RESTORATION SITES NORTH FORK ISLANDS	pped) ests) plan by section onl RING AREA	 	F F
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA MIT 1	CANT HABITAT SITES (All unma HERON ROOKERY (100 ne EAGLE NEST Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER TION AND RESTORATION SITES NORTH FORK ISLANDS Remove sand to create i or subtidal environment.	pped) ests) plan by section onl RING AREA	 	F F
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA! MITIGA!	ICANT HABITAT SITES (All unmathed) HERON ROOKERY (100 nemotion) EAGLE NEST Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER FION AND RESTORATION SITES NORTH FORK ISLANDS Remove sand to create is or subtidal environment. DEPENDENT DEVELOPMENT SITES	pped) ests) plan by section onl RING AREA	 	F F EN-G
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA! MIT 1 MATER-1 MD 1	ICANT HABITAT SITES (All unmathed in County (100 network)) HERON ROOKERY (100 network)) EAGLE NEST Identified in County's Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER BAND-TAILED PIGEON WATER FION AND RESTORATION SITES NORTH FORK ISLANDS Remove sand to create is or subtidal environment. DEPENDENT DEVELOPMENT SITES SIUSLAW PACIFIC MOORAGE SIUSLAW PACIFIC MOORAGE	pped) ests) plan by section onl RING AREA	 	F F EN-G
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA MIT 1	ICANT HABITAT SITES (All unmather stress) HERON ROOKERY (100 nemotion stress) Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER STORATION SITES NORTH FORK ISLANDS Remove sand to create is or subtidal environment. DEPENDENT DEVELOPMENT SITES SIUSLAW PACIFIC MOORAGE FLORENCE WATERFRONT SIUSLAW PACIFIC MOORAGE	pped) ests) plan by section onl RING AREA	 58.0	F F EN-G
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA MIT 1 MATER-1 MD 1 MD 2	ICANT HABITAT SITES (All unmather stress) HERON ROOKERY (100 nemotion stress) Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER STORATION SITES NORTH FORK ISLANDS Remove sand to create i or subtidal environment. DEPENDENT DEVELOPMENT SITES SIUSLAW PACIFIC MOORAGE FLORENCE WATERFRONT Moorage, Marina DMD site	pped) ests) plan by section onl RING AREA	 58.0	F F EN-G M
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HITIGA! MIT 1 MATER-1 MD 1	ICANT HABITAT SITES (All unmather stress) HERON ROOKERY (100 nemotion stress) Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER BAND-TAILED PIGEON WATER TION AND RESTORATION SITES NORTH FORK ISLANDS Remove sand to create i or subtidal environment. DEPENDENT DEVELOPMENT SITES SIUSLAW PACIFIC MOORAGE FLORENCE WATERFRONT Moorage, Marina DMD sit JOHNSON'S ROCK PRODUCTS	pped) ests) plan by section onl RING AREA Intertidal	 58.0	F F EN-G
MD 8 SIGNIF: HAB 1 HAB 2 HAB 3 HAB 4 HAB 4 HITIGA: AITIGA: MATER-1 MD 1 MD 2	ICANT HABITAT SITES (All unmather stress) HERON ROOKERY (100 nemotion stress) Identified in County's OSPREY HABITAT BAND-TAILED PIGEON WATER STORATION SITES NORTH FORK ISLANDS Remove sand to create i or subtidal environment. DEPENDENT DEVELOPMENT SITES SIUSLAW PACIFIC MOORAGE FLORENCE WATERFRONT Moorage, Marina DMD site	pped) ests) plan by section onl RING AREA Intertidal	 58.0	F F EN-G M


SITES

Total Shoreland Area: 6456.3 acres

Total Shor	eland Area: 6456.3 acres							Uncon-								
					MANAGEMENT			solida-		Aquatic				Aquatic		Tidal
	_	Area			CLASS	Total	SUBTIDAL	ted	Bottom	Bed	INTERTIDAL	Shore	Flat	Bed	Bar	Marsh
CLASS/Code	Zone	In Acres	% Shore	<pre>% Class</pre>	AND UNIT	Area		Bottom						1		
							1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
URBAN		671.8	10.4		TOTAL	6543.6	3748.4	3748.4	0.0	0.0	2795.2	123.6	1021.6	400.1	49.1	1200.8
UNLINI		0/1.0	10.4		IUIAL	0343+0	3/%0 **	3740.4	0.0	0.0	2133.2	123.0	1021.0	400.1	49.1	1200.0
AR	Agricultural Resource	31.7	0.5	4.7	NATURAL	4340.2	1946.8	1946.8	0.0	0.0	2393.4	42.4	904.0	356.3	0.0	1090.7
С	Commercial	38.4	0.1	1.2												
CS	Urban Conservation Shoreland	476.6	7.4	70.9	EN O	115.3	67.2	67.2	_	-	48.1	4.8	8.4	-	-	34.9
FG	Forestry Grazing	49.6	0.8	7.4	EN 4	3216.0	1683.8	1683.8	-	-	1532.2	17.4	759.5	350.3	-	405.0
M-1	Light Industrial	1.3	0.0	0.2	EN 8	218.8	71.8	71.8	-	-	147.0	20.2	49.1	6.0	-	71.7
					EN 11	74.0	34.1	34.1	-	-	39.9	-	-	-	-	39.9
M-2	Industrial	4.9	0.1	0.7	EN 12	355.1	0.0	-	_	-	355.1	-	77.6	-	-	277.5
M3	Marine Industrial	90.0	1.4	13.4	EN 14	361.0	89.9	89.9	-	-	271.1	-	9.4	-	-	261.7
TC	Tourist Commercial	9.3	0.1	1.4												
					CONSERVATION	1057.4	817.1	817.1	0.0	0.0	240.3	52.9	91.8	8.1	0.0	87.5
RURAL		5784.5	89.6			100774	01/11	01/11	0.0	0.0	24003	52.05	5110	001	0.00	0.00
		0.01.0			EC 0	76.7	49.4	49.4	-	-	27.3	3.9	-	-	-	23.4
RCS	Rural Conserv. Shoreland	3893.3	60.3	67.3	EC 1	94.4	76.7	76.7	-	-	17.7	9.9	7.8	_	-	-
CT,TC	Tourist Commercial	25.4	0.4	0.4	EC 2	52.0	33.1	33.1	-	-	18.9	6.2	5.8	6.9	-	-
FF	Farm Forest	87.5	1.4	1.5	EC 7	4.2	0.0	-	-		4.2		-	-	-	4.2
FG	Exclusive Farm Use - Grazing	682.4	10.6	11.8	EC 9	60.4	38.0	38.0	-	-	22.4	2.0	20.4	-	-	-
M-1	Light Industrial	90.3	1.4	1.6	EC 10	42.9	16.4	16.4	-	-	26.5	1.6	20.3	_	-	4.6
					EC 11	286.9	221.3	221.3	-	-	65.6	9.6	23.6	-	-	32.4
M-3	Heavy Industrial	7.1	0.1	0.1	EC 13	439.9	382.2	382.2	-	-	57.7	19.7	13.9	1.2	-	22.9
MC	Marine Commercial	67.4	1.0	1.2												
MRI	Marine Industrial	4.0	0.1	0.1												
PR	Public Reserve	758.5	11.7	13.1	DEVELOPMENT	1146.0	984.5	984.5	0.0	0.0	161.5	28.3	25.8	35.7	49.1	22.6
RWDS	Rural Water Dependent Shore.	114.7	1.8	2.0												
	-				ED 0	50.4	47.9	47.9	-	-	2.5	0.7	1.8	-	-	-
TR	Timberland Resource	52.0	0.8	0.9	ED 1	395.9	336.3	336.3	-	-	59.6	21.0	-	-	38.6	-
WDI	Water Dependent Industrial	1.9	0.0	0.0	ED 3	480.4	456.4	456.4	-	-	24.0	0.6	11.2	1.7	10.5	-
	1				ED 5	132.7	67.3	67.3	-	-	65.4	0.1	11.6	31.3	-	22.4
					BD 7	33.2	31.6	31.6	-	_	1.6		-	1.4	-	0.2
					ED 13	19.4	18.1	18.1	-	-	1.3	-	-	1.3	-	-
					MRI O	34.0	26.9	26.9	-	-	7.1	5.9	1.2		-	-

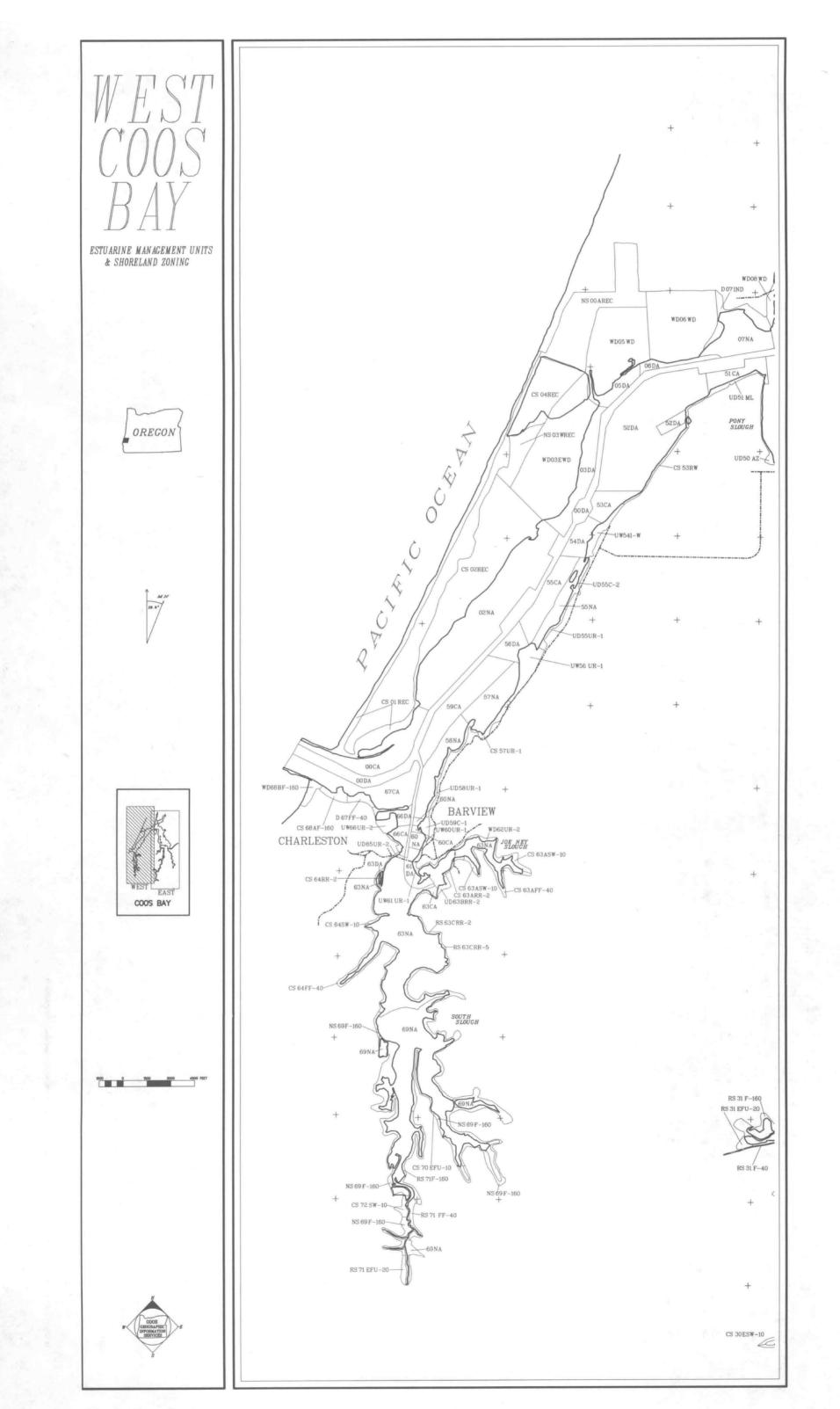

HABITAT C		AREA IN ACRES	PERCENT OF	ACRES IN	ACRES IN	ACRES
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABIT	ATS	6543.6	100.0%	4340.2	1057.4	1146.0
UNCONSOLI	DATED BOTTOM					
1.1	Unspecified Type	3748.4	57.3%	1946.8	817.1	984.5
					01771	504.5
SHORE						
2.1	Unspecified Type	21.3	0.3%	-	19.4	1.9
2.1.1	Sand	4.6	0.1%	-	4.3	0.3
2.1.3	Mud	45.1	0.7%	25.0	13.5	6.6
2.1.5	Wood Debris/Organic	14.7	0.2%	14.7	-	-
2.1.6	Cobble/Gravel	4.6	0.1%	-	3.9	0.7
2.1.7	Boulder	24.4	0.4%	-	5.6	18.8
2.1.8	Bedrock	8.9	0.1%	2.7	6.2	-
FLAT						
2.2	Unspecified Type	77.6	1.2%	77.6	_	_
2.2.1	Sand	31.1	0.5%	17.5	13.6	-
2.2.2	Sand/Mud (Mixed)	708.2	10.8%	704.9	-	3.3
2.2.3	Mud	204.7	3.1%	104.0	78.2	22.5
AQUATIC BI	3D					
2.3.9	Seagrass	164.5	2.5%	157.6	6.9	
2.3.9(1)	Seagrass on Sand	32	0.5%	32.0	-	_
2.3.9(2)	Seagrass on Sand/Mud	160.1	2.4%	138.9	_	21.2
2.3.9(3)	Seagrass on Mud	12.3	0.2%	0.5	_	11.8
2.3.10(8)	Seagrass on Bedrock	31.2	0.5%	27.3	1.2	2.7
BEACH/BAR						
2.4.1	Sand	49.1	0.8%	-	-	49.1
						42.1
TIDAL MARS						
2.5	Unspecified Type	102.4	1.6%	74.2	28.2	-
2.5.11	Low Salt Marsh	110.6	1.7%	94.0	-	16.6
2.5.12	High Salt Marsh	841	12.9%	781.1	53.9	6
2.5.13	Fresh Marsh	51.8	88.0	51.8	-	-
2.5.14	Shrub Marsh	95	1.5%	89.6	5.4	-

SPECIAL SHORELAND SITES

CODE	NAME/Comments		Size	Zone
			(In Acres)	
DREDGED MA	TERIAL DISPOSAL SITES	Capacity		
		(In Cubic Yards)		
DMD 1	SALMON HARBOR	105,000	50.0	MC/PR
DMD 2	INTERNATIONAL PAPER #1	41,500	2.5	M3
DMD 3	INTERNATIONAL PAPER #2	39,000	4.0	M3
DMD 4	LEED'S ISLAND	1,130,000	70.0	UWD
DMD 5	BOLON ISLAND #1	141,000	6.0	M3
DMD 6	BOLON ISLAND #2	25,800	4.0	M3
DMD 7	OTTER SLOUGH	80,666	5.0	FG
DMD 8	CHAMPION MILL	310,000	16.0	M2
DMD 9	BRAINARD CREEK	60,000	14.0	FG
DMD 11	IN BAY		25.0	ED
	In-water disposal site.	Capacity unknown.		
SIGNIFICAN	T HABITAT SITES			
HAB 1	CONOT BT BT D. ODDDE LINE AND		505 0	
HAB 11	SCHOLFIELD CREEK WETLAND		525.0	14EN
HAB 12	BUTLER CREEK WETLAND PROVIDENCE CREEK WETLAND		260.0	12EN
HAB 13	FRANZ CREEK WETLAND		165.0	CS
HAB 14	HUDSON SLOUGH WETLAND		48.0	TR 11PN/PP
HAB 5	WINCHESTER CREEK WETLAND		40.0	11EN/FF CS
HAB 8	SMITH RIVER		28.0	RCFG
HAB 8	SMITH RIVER		20.0	FG
HAB 8	OTTER SLOUGH WETLAND			rG
MITIGATION	AND RESTORATION SITES			
MIT I	PROVIDENCE CREEK		55.0	CS
MIT II	Remove tidegates. WEST MOUTH SCHOLFIELD		6.3	CS
	Lower elevation and crea	ate tidal channels.	0.5	CS
MIT III	PURDY ISLAND	ite tituai chaimers.	3.1	FG
	Lower elevation and crea	ate tidal channels	3.1	rg
MIT IV	SCOTT'S SWAMP	ice citual chamiers.	14.2	EC
	Install larger culverts	or replace dike with		EC.
MIT V	STEAMBOAT ISLAND	or replace and with	14.5	8 EN
	Move dredge spoils to up	land site.	12.5	O ER
WATER-DEPEN	NDENT DEVELOPMENT SITES			

WDD	1	LEEDS ISLAND	25.0	AR
WDD	2	COHO MARINA	5.0	C3
WDD	3.	MCINTOSH SLOUGH SOUTH (Industrial site)	15.0	M3
WDD	4	MCINTOSH SLOUGH NORTH	15.0	M3
WDD	5	REEDSPORT WATERFRONT WEST (Industrial)	25.0	M3
WDD	6	REEDSPORT WATERFRONT EAST (Small-scale industry)	15.0	M3
WDD	7	GARDINER (Marina and industry)	82.0	M3
WDD	8	SALMON HARBOR (Commercial moorage and industry)	67.0	M3/MC

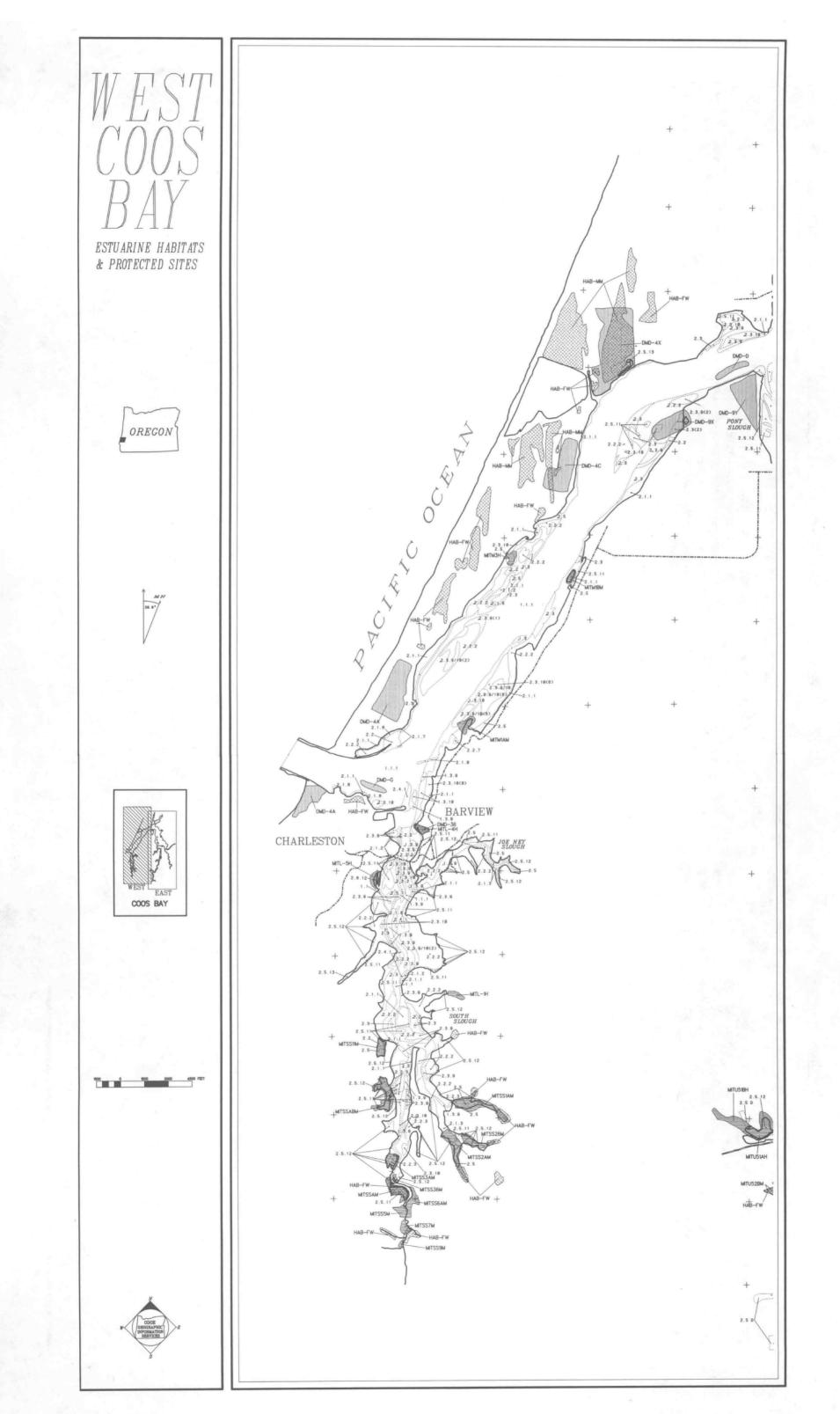
.



Total Shoreland Area: 7836.9 acres

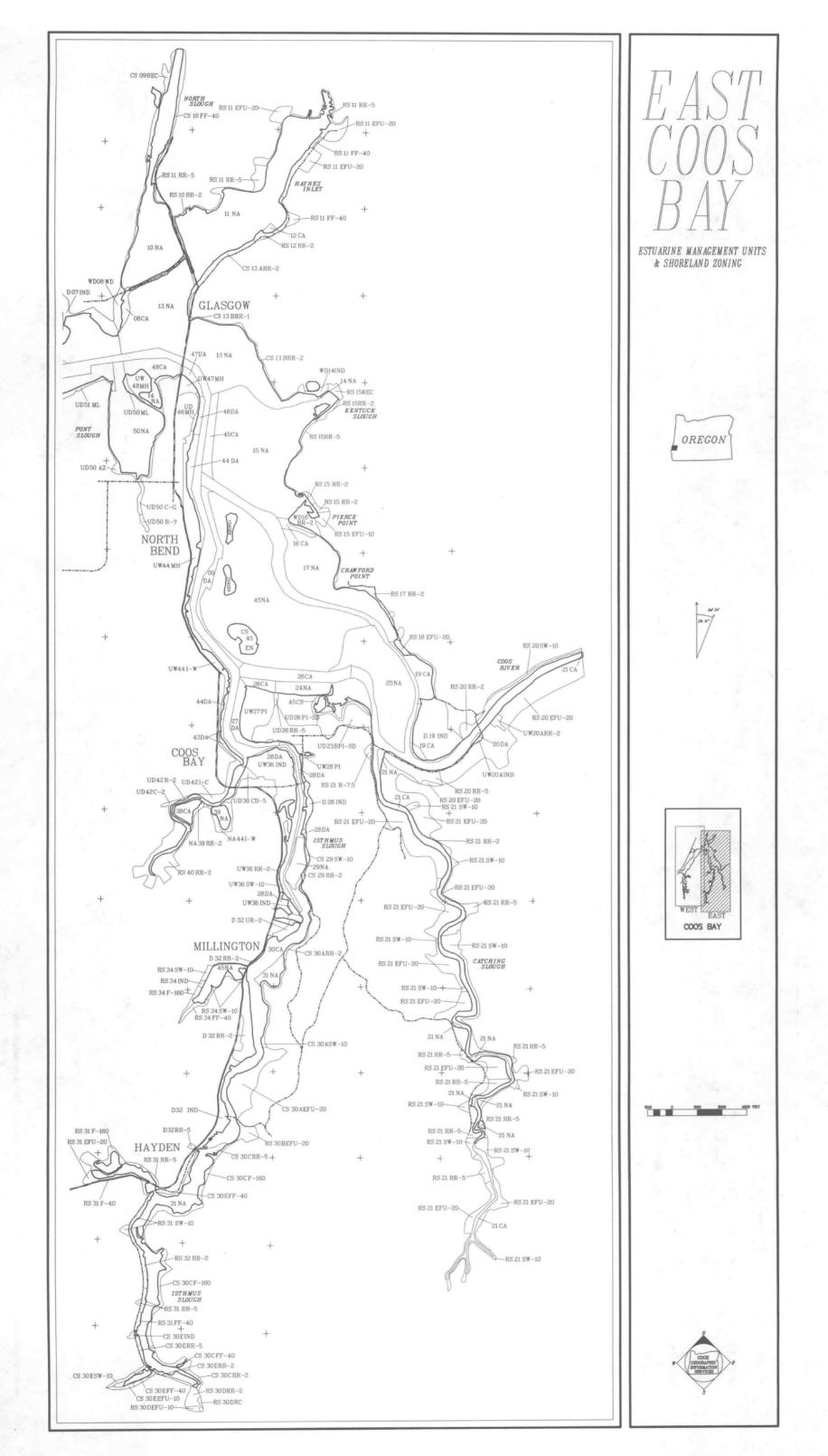
HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

CARS/COM Enda A Case MONE/COM Constrained in the second of the se	Total Shore	Land Area: 7836.9 acres							11								
Chall Jone Taberies V Biolog V Call Superior V Call Superior Notes Notes <th></th> <th></th> <th>1.000</th> <th></th> <th></th> <th>MANACEMENT</th> <th></th> <th></th> <th>Uncon-</th> <th>Pock</th> <th>Amatic</th> <th></th> <th></th> <th></th> <th>Aquatic</th> <th>Beach/</th> <th>Tidal</th>			1.000			MANACEMENT			Uncon-	Pock	Amatic				Aquatic	Beach/	Tidal
Difference Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	CT.ASS/Code	Zone		% Shore	& Class		Total	SUBTIDAL			-	INTERTIDAL	Shore	Flat	-		
UBBAN 1274.7 16.3 AX Atroot: 32.5 0.4 2.6 C1 Contral Commercial (10) 24.0 0.4 2.6 C2 General Commercial (10) 24.0 0.4 1.6 C3 General Commercial (10) 24.0 0.4 1.6 C4 General Commercial (10) 24.0 0.4 1.6 M27004 Boole (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	called by code	Hone	111 1102 00	0 01020	0 01400												
Altport Number of the state of the s								1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
Airport 32.5 0.4 2.6 Num Dots Local Local <thlocal< th=""> <thlocal< th=""> <thlocal< t<="" td=""><td>URBAN</td><td></td><td>1274.7</td><td>16.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1056 0</td><td>FF 1</td><td>1726 5</td></thlocal<></thlocal<></thlocal<>	URBAN		1274.7	16.3											1056 0	FF 1	1726 5
C-1 Central Commercial (CB) 1.0 0.0 120.0 0.0 102.0 6471.3 443.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 413.9 3040.2 170.4 170.5						TOTAL	13300.5	5378.3	5125.1	0.0	253.2	7922.2	691.0	3492.8	1956-8	55.1	1/20.0
C-2 General Commercial (0m) 2.1 0.1		-															
C-G General Commercial (000) no.1 0.1 0.1 0.0 100000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 100000000000 10000000000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0251 2</td><td>1500.0</td><td>1200 0</td><td>0.0</td><td>102 0</td><td>6671 2</td><td>443 0</td><td>3040 2</td><td>1701.4</td><td>41.3</td><td>1444.5</td></t<>							0251 2	1500.0	1200 0	0.0	102 0	6671 2	443 0	3040 2	1701.4	41.3	1444.5
Cn-5 Controlled Development 15.3 0.2 1.2 NA 2 693.0 273.7 273.7 - - 419.3 110.7 107.7 17.8 - - 15.1 C3 Conservation Shorelands 33.5 0.3 1.8 NA 10 423.7 56.0 56.0 - - 807.7 15.0 09.3 0.5 37.6 77.6 77.7 77.7 - - 100.7 17.7 87.7 87.7 15.0 09.3 87.5 77.6 77.6 - - 100.7 17.7 87.7 100 135.1 09.3 87.5 77.6 77.7 77.7 - - 153.1 87.1 100.7 17.7 7 17.0 1.8 163.0 100.7 17.7 7 67.0 10.7 17.7 10.0 130.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 100.7 <td></td> <td>and a second second</td> <td></td> <td></td> <td></td> <td>NATURAL</td> <td>8231+3</td> <td>1280.0</td> <td>1398+0</td> <td>0.0</td> <td>102.0</td> <td>0071.5</td> <td>443.3</td> <td>3040+2</td> <td>170114</td> <td>1110</td> <td></td>		and a second				NATURAL	8231+3	1280.0	1398+0	0.0	102.0	0071.5	443.3	3040+2	170114	1110	
Controlled bettogenit 11.3 0.12 10.2 10.7 102.6 10.7 70.7 - - 111.9 1.5 54.3 38.8 - 17.3 CG Conservation Borelands 30.1 0.5 3.0 NA 11 022.7 56.0 56.0 - - 563.7 3.0 24.4 163.2 15.5 89.3 - - 563.7 3.0 24.4 163.2 15.8 87.6 76.7 70.7 - - 563.7 3.0 24.4 163.2 15.8 87.6 77.2 76.7 100 150.8 1.4 21.4 17.3 76.7 70.7 - - 563.7 3.0 24.4 163.2 15.8 87.6 77.2 76.7 100.1 50.3 14.3 14.4 27.4 16.7 17.3 16.6 1.6 - - 30.4 50.7 77.2 26.3 16.6 16.7 77.4 16.8 16.9 17.3 16.4 24.3 10.6 16.5 17.3 16.1 17.3 16.1 16.						NB 2	602 0	272 7	272 7	_	-	419.3	118.7	107.7	177.8	-	15.1
C3 Conservation Shorelands 21.5 0.3 1.8 A.10 422.7 56.0 - - 367.7 19.0 135.5 89.3 - 12.9 1-C Industrial 105.8 1.3 8.3 NA 11 662.2 98.5 9.6 0.1 50.8 1.4 21.4 23.1 8.2 2.7 1ND Industrial 194.7 2.5 15.3 NA 14 20.0 1.6 1.6 - - 6.4 35.1 21.0 32.0 39.1 - 37.4 NR Beary Industrial 195.2 2.4 14.5 8A 17 36.7 2.0 - - 35.0 28.0 39.1 - 37.4 NR Light Industrial 32.7 0.4 2.6 N.14 30.4 0.2 2.2 - - 35.0 28.0 10.6 1.4 10.4 10.7 10.4 10.2 10.4 10.2 10.4 10.2 10.4 10.2 10.4 10.2 10.4 10.5 10.4 10.6 10.4	CD-5	Controlled Development	15.3	0.2	1.2												
T-C Industrial Commercial 30.1 0.5 3.0 N.11 662.2 90.5 - - 563.7 3.0 29.4 10.2 15.5 27.6 INU Industrial 194.7 2.5 15.3 NA 13 28.25 32.47 32.46 - - 26.4 3.5 17.1 - - 5.6 INU Industrial 194.7 2.5 15.3 NA 14 28.0 1.6 1.6 - - 26.4 3.5 17.1 - - 5.6 NI Light Industrial 18.7.7 0.4 2.6 N.15 80.6 1.6 - - 30.4 5.7 0.3.2 10.0 0.8 14.3 10.5 1.6 1.6 1.6 - - 20.4 15.6 0.0 1.6 1.6 1.6 - - 20.3 16.6 0.6 0.6 2.3 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 <td< td=""><td>CC</td><td>Concorrection Chorolanda</td><td>22.5</td><td>0.3</td><td>1.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>	CC	Concorrection Chorolanda	22.5	0.3	1.9											-	
w Material 105.8 1.3 6.3 NA 13 120.2 324.7 324.6 - 0.1 503.8 1.4 210.4 221.1 8.2 2.7 ND Industrial 195.2 2.4 14.5 NA 14 20.0 1.6 1.6 - - 2.64 3.5 17.1 - - 5.8 NH Heavy Industrial 135.2 2.4 14.5 NA 15 306.9 105.6 100.1 - 5.5 703.3 24.0 302.8 339.1 - 37.4 - 37.4 - - 30.4 0.0 - - - 30.4 0.0 - - 30.4 1.9 22.5 - 3.9 - 21.5 - 1.0 - 1.0 - 1.0 - 20.4 - - 30.4 1.0 - - 1.0 - 30.4 1.0 - 1.0 - 30.4 1.0										-	-					15.5	87.6
THD Industrial 194,7 2.5 15.3 NA 14 20.0 1.6 1.6 - - 2.6.4 3.5 17.1 - - 5.7.8 NH Keavy Industrial 32.7 0.4 14.5 100.1 - - 33.6 24.0 32.4 32.4 - 37.4 - 37.4 PI Light Industrial 32.7 0.4 2.6 N.1 36.7 27.9 27.9 - - 33.6 28.1 16.0 44.5 - 33.4 PI Planned Industrial 126.5 1.6 9.9 N.2 16.6 1.6 6.0 6.1 4.9 27.4 1.5 - 2.6 16.0 - - 30.4 4.0 2.7 1.0 0.0 1.1 N.4 2.0 2.2 - - - 2.6 0.0 - - 2.6 0.0 - 2.6 0.0 0.0 N.4 1.0											0.1				273.1	8.2	2.7
Heavy Industrial Heavy Industrial<														17.1	-	-	5.8
Mathematical Borna Barlow Barlow </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>5.5</td> <td></td> <td>24.0</td> <td>302.8</td> <td>339.1</td> <td>-</td> <td>37.4</td>										-	5.5		24.0	302.8	339.1	-	37.4
nt Light Industrial 32.7 0.4 2.6 N 21 30.4 0.0 - - - - 30.4 5.2 - 3.9 - 21.0 PI Planned Industrial 162.5 1.6 9.9 N 24 162.1 2.2 2.2 - - 15.9 - 8.25 16.0 - 6.1.4 PI Planned Industrial 16.0 0.1 12.7 N 25 398.5 64.8 58.6 - 6.2 333.7 14.9 27.4 1.9 - 289.5 - - 30.1 23.6 - 12.7 38.5 - - 12.7 N 39 0.0 0.7 N 14.9 23.6 - - - 24.5 - - - 12.7 7.7 7 - 191.7 191.7 14.8 145.1 13.7 17.2 7.7 - 191.7 191.7 14.8 13.7 10.2 - - 4.2 10.0 101.1 5.0 14.8 10.1 19.7 1	PALL	neavy industrial	103+2	2.11	14.5					-	-	335.8	28.3	169.6	44.5	-	93.4
Primed Ladastrial 126.5 1.6 9.9 9.4 24 162.1 2.2 2.2 - - 159.9 - 82.5 16.0 - 61.4 BT-SD Planned Lodastrial 6.0 0.0 0.1 NA 29 398.5 64.8 56.6 - - 51.2 - 38.5 4.9 7.4 1.9 - 729.5 R-7 Single Pauly Residential 13.3 0.2 0.1 NA 45 171.7 148.1 145.1 - 3.0 102.3.6 9.6 60.5 - 24.5 R-7.5 Restricted Residential 3.3 0.2 0.0 N.3 NA 55 311.4 33.7 32.0 - 1.7 297.7 - 191.7 39.3 - 48.5 7.7 - - 3.4 0.8 0.1 16.8 - 5.7 16.0 5.7 7.7 - - 4.2 100.0 4.1 5.5 8.1 0.1 0.7 - - 4.2 100.0 4.1 5.5 8.0 0.6	MT.	Light Industrial	32.7	0.4	2.6			0.0	-	-	-	30.4	5.2	-	3.9	-	21.3
PI-BO Planed Ind - Spoils Disp 162.0 2.1 12.7 18.42 398.5 64.8 58.6 - 6.2 333.7 14.9 27.4 1.9 - 289.5 R-2 Single Pamily Residential 6.0 0.1 0.5 NA 31 397.6 94.5 94.5 - - 303.1 23.6 - 6.0 2.1 12.7 R-7 Single Pamily Residential 6.0 0.1 0.5 NA 31 397.6 94.5 - - 303.1 23.6 - 6.0 2.1 12.7 R-7.5 Restidential 13.3 0.2 1.0 NA 45 1171.7 148.1 145.1 - 3.0 1023.6 98.7 670.7 7.9 - 164.6 NR+1 Netiontial 16.6 1.2 7.5 NA 55 84.1 0.7 0.7 - - 83.4 0.8 60.1 6.0 6.7 7.8 Res Sincia Pamily Residential 16.6 1.2 7.5 NA 55 84.1 0.7 0.7 -		2						2.2	2.2	-	-	159.9	-	82.5	16.0	-	61.4
R-2 Single Pamily & Suplex Res 1.5 0.0 0.1 NA 29 51.8 0.6 0.6 - - 51.2 - 30.5 - - 12.7 R-7 Single Pamily Residential 6.0 0.1 NA 39 24.5 0.0 - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 0.0 - - 24.5 0.0 - - 24.5 0.0 - - 24.5 0.0 - - 24.5 0.0 - - 24.5 0.0						NA 25	398.5	64.8	58.6	-	6.2	333.7	14.9	27.4	1.9	-	
R-7 Single Family Residential 6.0 0.1 0.5 NA 31 397.6 94.5 94.5 94.5 - - 303.1 20.6 - 60.5 - 219.0 R-7.5 Restricted Residential 13.3 0.2 1.0 NA 45 1171.7 146.1 145.1 - 3.0 1023.6 98.7 670.7 87.6 - 166.5 - 166.5 - 166.5 - 166.5 - 166.5 - 166.5 - 48.7 107.7 18.4 145.1 - 3.0 1023.6 98.7 670.7 87.6 70.7 - 191.7 39.3 - 48.7 108.7 154.2 4.2 - - 4.2 150.0 4.1 16.8 - 57.7 154.2 4.2 - - 4.2.6 89.9 55.9 - - 1.8 1.8 16.3 662.8 17.5 84.1 21.0 - 63.1 67.4 2.4.6 89.9 5.5 8.6 1.6 1.6 8 77.1 324.2						NA 29	51.8	0.6	0.6	-	-	51.2	-	38.5	-	-	
R-7.5 Reatricted Residential 13.3 0.2 1.0 NA 45 171.7 148.1 145.1 - - - - - - - 24.5 - - - - 24.5 - - - - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 - - - 24.5 - - 166.6 5 Re-5 Rural Residential 1 146.4 1.9 11.5 NA 55 84.1 0.7 0.7 - - 8.4 0.8 60.1 16.8 - 5.7 UR-1 Urban Residential 2 96.0 1.5 NA 50 151.5 84.1 21.0 - 6.1 67.4 24.6 8.9 65.5 - - - NA 60 26.3 8.2 2.3 - 5.9 18.1 - 9.5 6.8 - 10.0 0.0 0.6 10.1 0.1 0.1 0.5 10.1 0.6 0.6 10.1						NA 31	397.6	94.5	94.5	-	-	303.1	23.6	-	60.5	-	
RR-5 Rural Residential 3.5 0.2 1.0 mate 313.4 33.7 32.0 - 1.7 279.7 - 191.7 39.3 - 48.7 RR-5 Rural Residential 3.9 0.0 0.3 MA 55 84.1 0.7 0.7 - - 83.4 0.8 60.1 16.8 - 5.7 RW Restricted Waterfront Res 17.9 0.2 1.4 RA 55 84.1 0.7 0.7 - - 83.4 0.8 60.1 16.8 - 5.7 RW Residential 1 46.7 1.5 84.1 21.0 - 63.1 67.4 2.6 8.9 55.9 - - 1.8 UR-2 Urban Residential 2 96.0 1.2 7.5 NA 58 151.5 84.1 21.0 - 6.7.7 525.0 17.5 271.1 17.6 18.0 RURAL 6562.2 83.7 7.5 0.6 6.5 7.8 6.31.8 42.4 17.8 24.6 589.4						NA 39	24.5	0.0	-	-	-		-			-	
RNC-5 Rural residential 3-3 0.10 0.03 Res Re	R-7.5	Restricted Residential	13.3	0.2	1.0	NA 45	1171.7	148.1	145.1	-	3.0	1023.6	98.7				
NM Restricted waterroot Res 17.9 0.2 1.4 M. 57 154.2 4.2 150.0 4.1 55.8 81.0 - 9.1 UR-1 Urban Residential 1 146.4 1.9 11.5 84.1 21.0 - 63.1 67.4 2.6 8.9 55.9 - - 1.8 Urban Residential 2 96.0 1.2 7.5 NA 50 151.5 84.1 21.0 - 63.1 67.4 2.6 8.9 55.9 - - 1.8 Urban Residential 2 96.0 1.2 7.5 NA 50 26.3 8.2 2.3 - 5.9 10.1 - 9.5 6.8 - 1.8 VDan Residential 2 96.0 1.2 0.5 0.6 62.2 83.7 NA 69 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 EPU-10 Exclusive Farm Use - 10 4.2.2 0.2	RR-5	Rural Residential	3.9	0.0	0.3	NA 50	313.4	33.7	32.0	-	1.7	279.7					
UR-1 Urban Residential 1 140.4 1.9 11.5 m.1.5 151.5 12.2 12.2 7.5 NN.58 151.5 84.1 21.0 - 63.1 67.4 2.6 8.9 55.9 - - 1.8	RW	Restricted Waterfront Res	17.9	0.2	1.4	NA 55	84.1		0.7	-							
UN-2 Urban Residential 2 96.0 1.2 7.3 NA 60 26.3 8.2 2.3 - 5.9 10.1 - 9.5 6.8 - 1.8 RUTAL 6562.2 83.7 NA 60 26.3 8.2 2.3 - 5.9 10.1 - 9.5 6.8 - 1.8 RUTAL 6562.2 83.7 NA 60 26.3 137.8 70.1 - 67.7 525.0 17.5 271.1 117.8 17.6 101.0 RUT-10 Exclusive Farm Use - 10 42.5 0.5 0.6 657.7 8 - 1.86 90.0 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 EFU-10 Exclusive Farm Use - 20 1154.1 14.7 17.6 - 5.2 0.2 0.2 0.2 - 7.3 2 - - 10.0 0.0 Rescare and tenter 2.5 0.0 0.0 - - - - - - - - - <td>UR-1</td> <td>Urban Residential 1</td> <td>146.4</td> <td>1.9</td> <td>11.5</td> <td></td> <td>9.1</td>	UR-1	Urban Residential 1	146.4	1.9	11.5												9.1
RUTAL 6562.2 83.7 NA 63 662.8 137.8 70.1 - 67.7 52.0 17.5 271.1 117.8 17.6 101.0 RUTAL 6562.2 83.7 NA 69 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 EFU-10 Exclusive Parm Use - 10 42.5 0.5 0.6 65 7.8 - - 77.1 324.2 88.1 - 100.0 EFU-20 Exclusive Parm Use - 20 1154.1 14.7 17.6 - 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 EFU-20 Exclusive Parm Use - 20 1154.1 14.7 17.6 - 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 Fr-60 Forest - 40* 15.2 0.2 0.2 -	UR-2	Urban Residential 2	96.0	1.2	7.5												-
RURAL 6562.2 83.7 NA 69 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 EFU-10 Exclusive Farm Use - 10 42.5 0.5 0.6 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 EFU-10 Exclusive Farm Use - 20 1154.1 14.7 17.6 631.8 42.4 17.8 - 24.6 589.4 77.1 324.2 88.1 - 100.0 FF-160 Forest - 160* 510.6 6.5 7.8 7.4 7.3 22.4 2.7 3.2 IND Industrial 330.1 4.2 5.0 0.0 0.0 0.2 7.7 7.4 8.8 7.7 7.4 8.8 Re-2 Rural Residential - 1 1.7 0.0 0.0 0.5 7.4 8.8 8.4 7.7 7.4 8.8 Re-5 Rural Residential - 5 271.6 3.5 4.1 4.8 4.8 4.8 4.8 4																	
KUKAL 6562.2 83.7 Ku 65 6510 6110 110 110 6110 6110 6111 6111 EFU-10 Exclusive Farm Use - 10 42.5 0.5 0.6 EFU-20 Exclusive Farm Use - 20 1154.1 14.7 17.6 F-160 Forest - 160* 510.6 6.5 7.8 F-40 Forest - 40* 15.2 0.2 0.2 FF-40 Farm-Porest 40* 212.4 2.7 3.2 IND Industrial 330.1 4.2 5.0 RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2																	
KFU-20 Kxclusive Farm Use - 20 1154.1 14.7 17.6 F-160 Forest - 160* 510.6 6.5 7.8 F-40 Forest - 40* 15.2 0.2 0.2 FF-40 Forest 40* 212.2 2.7 3.2 IND Industrial 330.1 4.2 5.0 RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 SW-10 Small Woodlot - 10* 312.6 4.0 4.8	RURAL		6562.2	83.7		NA 69	031.8	42.4	17.8	_	24.0	303.4	//.1	J24+2	0011		
KFU-20 Kxclusive Farm Use - 20 1154.1 14.7 17.6 F-160 Forest - 160* 510.6 6.5 7.8 F-40 Forest - 40* 15.2 0.2 0.2 FF-40 Forest 40* 212.2 2.7 3.2 IND Industrial 330.1 4.2 5.0 RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 SW-10 Small Woodlot - 10* 312.6 4.0 4.8	RFT-10	Exclusive Farm Use - 10	42.5	0.5	0.6												
F-160 Forest - 160* 510.6 6.5 7.8 F-40 Forest - 40* 15.2 0.2 0.2 FF-40 Farm-Forest 40* 212.4 2.7 3.2 IND Industrial 330.1 4.2 5.0 RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 138.6 17.7 21.2																	
F7-40 Farm-Forest 40* 212.4 2.7 3.2 IND Industrial 330.1 4.2 5.0 RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2					7.8												
IND Industrial 330.1 4.2 5.0 RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2	F-40	Forest - 40*	15.2	0.2	0.2												
RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2	FF-40	Farm-Forest 40*	212.4	2.7	3.2												
RC Rural Center 2.5 0.0 0.0 REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2	THE	To Average 1	220 1	4.2	E O												
REC Recreation Management 1683.6 21.5 25.7 RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2																	
RR-1 Rural Residential - 1 1.7 0.0 0.0 RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2																	
RR-2 Rural Residential - 2 577.2 7.4 8.8 RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2																	
RR-5 Rural Residential - 5 271.6 3.5 4.1 SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2																	
SW-10 Small Woodlot - 10* 312.6 4.0 4.8 WD Water Dependent 1388.6 17.7 21.2	MN-2	MILAI NESIUEIILIAI - 2	511.2	/ • •2	0.0												
WD Water Dependent 1388.6 17.7 21.2	RR-5	Rural Residential - 5	271.6	3.5													
	SW-10	Small Woodlot - 10*	312.6	4.0	4.8												
Development Shorelands	WD		1388.6	17.7	21.2												
		Development Shorelands															

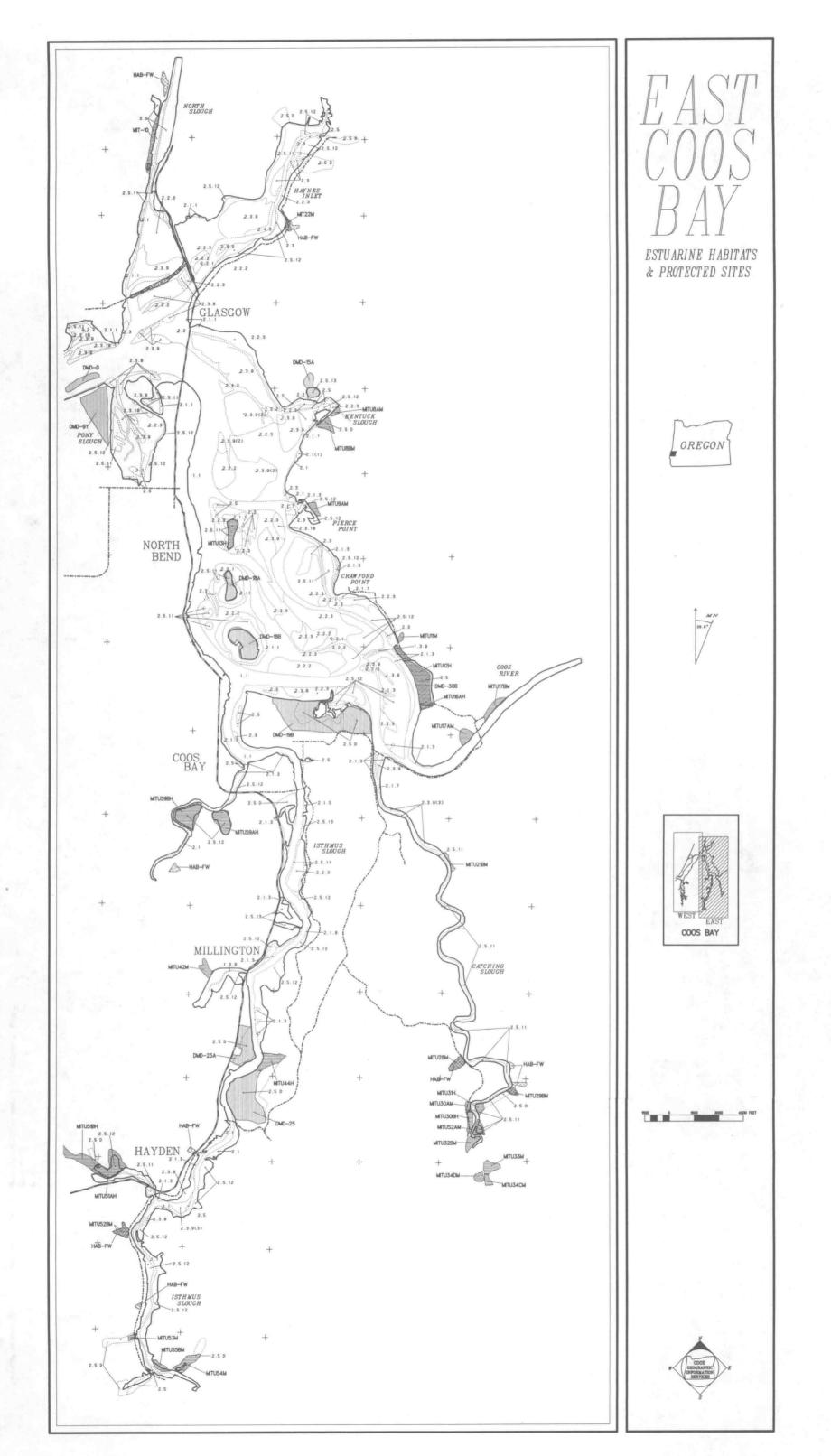

*Plan amendments have replaced these zoning districts with a combination of farm and forest zones with no minimum lot size.

CONSERVATION	2492.8	1814.2	1777.5	0.0	36.7	678.6	130.0	176.5	117.3	11.3	243.5
CA 0	224.2	172.4	172.4	-	_	51.8	10.5	36.8	4.5	_	-
CA 8	20.0	3.3	3.3	-	-	16.7	12.3	-	4.4	-	-
CA 12	6.5	1.2	1.2	-	-	5.3	-	3.3	0.2	-	1.8
CA 16	16.5	11.4	11.4	-	-	5.1	0.8	0.9	3.4	-	-
CA 19	85.5	16.8	16.8	-	-	68.7	9.4	-	-	-	59.3
CA 21	666.7	497.6	497.6	-	-	169.1	15.1	54.4	45.0	-	54.6
CA 26	141.3	116.6	116.6	_	-	24.7	-	21.9	2.7	-	0.1
CA 30	293.8	161.3	161.1	-	0.2	132.5	43.7	1.0	-	-	87.8
CA 38	88.4	42.7	42.7	-	-	45.7	8.2	-	-	-	37.5
CA 45	59.8	59.8	59.8	-	-	0.0	-	-	-	-	-
CA 48	74.0	34.0	34.0	-	-	40.0	-	28.9	10.1	-	1.0
CA 51	76.8	60.7	60.7	-	-	16.1	_	10.5	5.6	-	-
CA 53	80.5	62.4	62.4	-	-	18.1	16.5	-	1.6	-	-
CA 55	153.8	138.0	137.3	-	0.7	15.8	-	7.5	8.3	-	-
CA 59	232.6	216.9	191.6	-	25.3	15.7	-	0.7	15.0	-	-
CA 60	5.3	1.0	0.3	-	0.7	4.3	-	1.3	3.0	-	-
CA 63	6.7	0.5	-	-	0.5	6.2	-	4.8	-	-	1.4
CA 66	29.3	12.3	3.0	-	9.3	17.0	5.3	4.5	7.2	-	-
CA 67	231.1	205.3	205.3	-	-	25.8	8.2	-	6.3	11.3	-
DEVELOPMENT	2556.4	1984.1	1949.6	0.0	34.5	572.3	117.1	276.1	138.1	2.5	38.5
DEVELOPMENT	2556.4			0.0							38.5
	1036.5	999.9	991.4		34.5 8.5	36.6	1.7	29.5	5.1	2.5 0.3	-
DA O	1036.5 162.3	999.9 120.0	991.4 120.0	-	8.5	36.6 42.3	1.7 27.6			0.3	- 6.6
DA 0 DA 3	1036.5 162.3 62.9	999.9 120.0 41.3	991.4 120.0 41.3	-	8.5	36.6 42.3 21.6	1.7 27.6 21.6	29.5 5.5	5.1 2.6	0.3	_
DA 0 DA 3 DA 5	1036.5 162.3 62.9 40.5	999.9 120.0 41.3 37.4	991.4 120.0 41.3 37.4		8.5 - -	36.6 42.3 21.6 3.1	1.7 27.6 21.6 3.1	29.5 5.5 -	5.1 2.6 -	0.3	- 6.6 -
DA 0 DA 3 DA 5 DA 6 DA 20	1036.5 162.3 62.9 40.5 2.9	999.9 120.0 41.3 37.4 2.9	991.4 120.0 41.3 37.4 2.9	-	8.5 - - -	36.6 42.3 21.6 3.1 0.0	1.7 27.6 21.6	29.5 5.5 - -	5.1 2.6 - -	0.3	- 6.6 - -
DA 0 DA 3 DA 5 DA 6	1036.5 162.3 62.9 40.5	999.9 120.0 41.3 37.4 2.9 18.5	991.4 120.0 41.3 37.4 2.9 18.5		8.5 - - - -	36.6 42.3 21.6 3.1 0.0 42.1	1.7 27.6 21.6 3.1	29.5 5.5 - - 33.7	5.1 2.6 - -	0.3 - - -	- 6.6 - - 5.0
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27	1036.5 162.3 62.9 40.5 2.9 60.6	999.9 120.0 41.3 37.4 2.9	991.4 120.0 41.3 37.4 2.9		8.5 - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1	1.7 27.6 21.6 3.1 - 20.6	29.5 5.5 - -	5.1 2.6 - - 3.4	0.3 - - - -	- 6.6 - - 5.0 18.7
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28	1036.5 162.3 62.9 40.5 2.9 60.6 108.6	999.9 120.0 41.3 37.4 2.9 18.5 68.5	991.4 120.0 41.3 37.4 2.9 18.5 68.5		8.5 - - - - -	36.6 42.3 21.6 3.1 0.0 42.1	1.7 27.6 21.6 3.1	29.5 5.5 - - 33.7 0.8	5.1 2.6 - - 3.4 -	0.3	- 6.6 - - 5.0
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5		8.5 - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6	1.7 27.6 21.6 3.1 - 20.6 8.6	29.5 5.5 - 33.7 0.8 -	5.1 2.6 - - 3.4 -	0.3	- 6.6 - - 5.0 18.7 1.0
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43 DA 44	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1 99.5	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5		8.5 - - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6 1.0	1.7 27.6 21.6 3.1 - 20.6 8.6 1.0	29.5 5.5 - 33.7 0.8 -	5.1 2.6 - - 3.4 - -	0.3	- 6.6 - - 5.0 18.7 1.0 -
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43 DA 44 DA 46	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1 99.5 17.0	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0		8.5 - - - - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6 1.0 0.0 0.5	1.7 27.6 21.6 3.1 - 20.6 8.6 1.0	29.5 5.5 - 33.7 0.8 - - -	5.1 2.6 - - 3.4 - - - - -	0.3	- 6.6 - - 5.0 18.7 1.0 -
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43 DA 44 DA 46 DA 47	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1 99.5 17.0 19.6	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1		8.5 - - - - - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6 1.0 0.0	1.7 27.6 21.6 3.1 - 20.6 8.6 1.0 -	29.5 5.5 - - 33.7 0.8 - - - 0.5	5.1 2.6 - - 3.4 - - - -	0.3	- 6.6 - - 5.0 18.7 1.0 - -
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43 DA 44 DA 46 DA 47 DA 52	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1 99.5 17.0 19.6 707.1	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1 377.5 64.1	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1 377.5		8.5 - - - - - - - - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6 1.0 0.0 0.5 329.6 8.8	1.7 27.6 21.6 3.1 - 20.6 8.6 1.0 - 25.5	29.5 5.5 - 33.7 0.8 - - - 0.5 180.6	5.1 2.6 - - 3.4 - - - - - 119.2	0.3	- 6.6 - - 5.0 18.7 1.0 - - - 4.3
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43 DA 43 DA 44 DA 46 DA 47 DA 52 DA 54	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1 99.5 17.0 19.6 707.1 72.9	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1 377.5	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1 377.5 64.1		8.5 - - - - - - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6 1.0 0.0 0.5 329.6 8.8 16.3	1.7 27.6 21.6 3.1 - 20.6 8.6 1.0 - 25.5 7.4	29.5 5.5 - - 33.7 0.8 - - - 0.5 180.6 -	5.1 2.6 - - 3.4 - - - 119.2 1.4	0.3	- 6.6 - - 5.0 18.7 1.0 - - 4.3 -
DA 0 DA 3 DA 5 DA 6 DA 20 DA 27 DA 28 DA 43 DA 43 DA 44 DA 46 DA 47 DA 52 DA 54 DA 56	1036.5 162.3 62.9 40.5 2.9 60.6 108.6 12.1 99.5 17.0 19.6 707.1 72.9 70.3	999.9 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1 377.5 64.1 54.0	991.4 120.0 41.3 37.4 2.9 18.5 68.5 2.5 98.5 17.0 19.1 377.5 64.1 44.8		8.5 - - - - - - - - - - - - - - - - - - -	36.6 42.3 21.6 3.1 0.0 42.1 40.1 9.6 1.0 0.0 0.5 329.6 8.8	1.7 27.6 21.6 3.1 - 20.6 8.6 1.0 - 25.5 7.4	29.5 5.5 - - 33.7 0.8 - - 0.5 180.6 - 13.5	5.1 2.6 - - 3.4 - - - 119.2 1.4 2.8	0.3	- 6.6 - - 5.0 18.7 1.0 - - 4.3 -

.



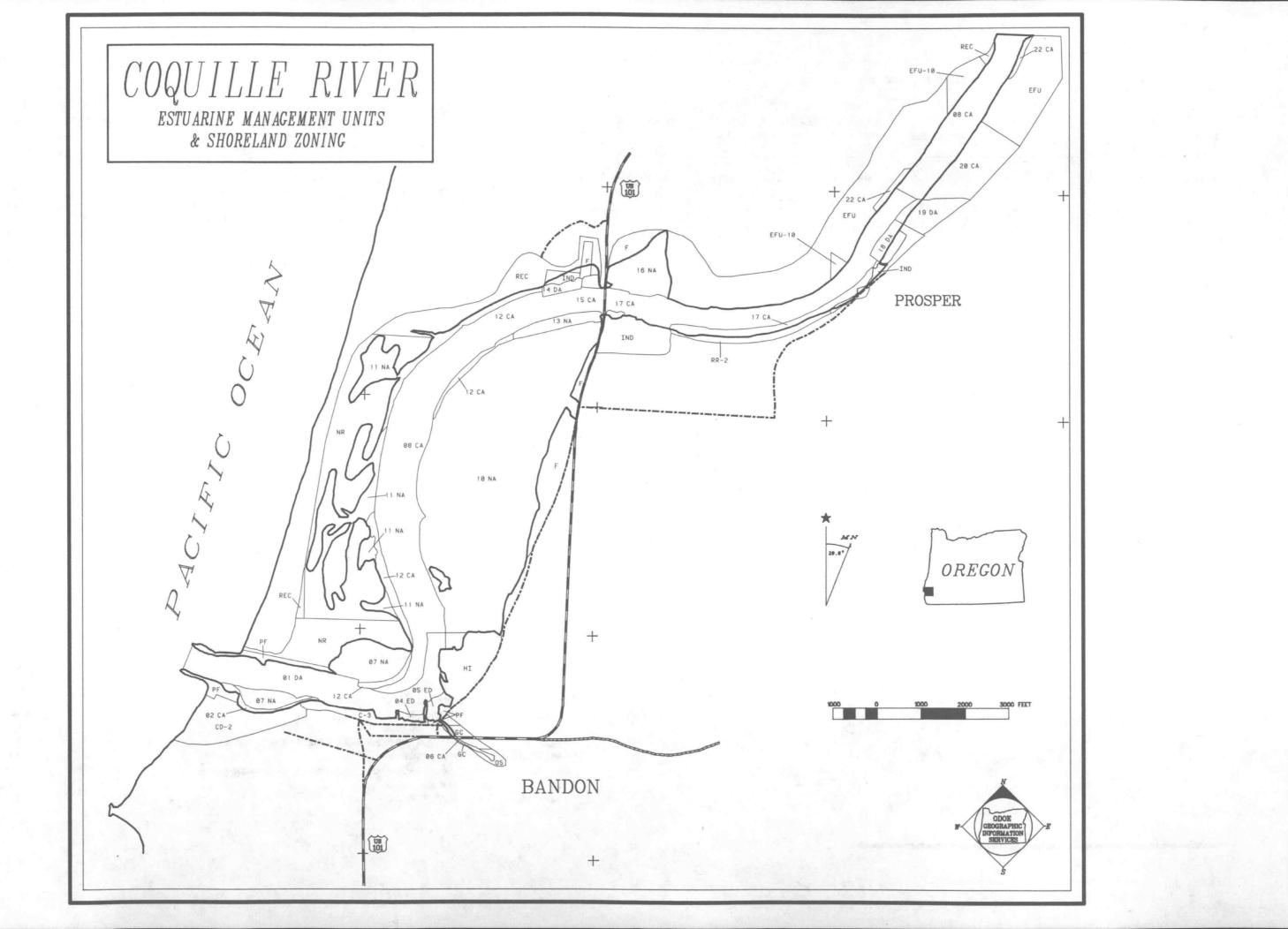
SPECIAL SHORELAND SITES


CODE	NAME/Comments		Size	Zone
			(Acres)	
DREDGED MATI	ERIAL DISPOSAL SITES	Capacity		
		(Cubic Yards)		
DMD 15A	EAST BAY DRIVE	200,000	15.0	CS
DMD 18A	MIDDLE ISLAND	250,000	35.0	CS
MD 18B	SOUTH ISLAND	300,000	20.0	CS
MD 19B	EASTSIDE	3,800,000	120.0	в
MD 1B	BASTENDORFF BEACH	240,000	30.0	WD
MD 25	LOWER ISTHMUS EAST	1,300,000	82.0	в
MD 25A	LOWER ISTHMUS WEST	920,000	38.0	D
MD 30B	CHRISTENSEN'S RANCH	696,000	36.0	RS
MD 3B	BARVIEW WAYSIDE	50,000	5.0	UW
MD 4C	NORTH SPIT 2	290,000	92.0	
MD 4X	HENDERSON MARSH	2,000,000	150.0	WD
MD 9X	AIRPORT EXTENSION	1,000,000	32.0	DA
MD 9Y	AIRPORT INTERIOR	336,000	30.0	
MD BAY D	INBAY AIRPORT		18.3	DA
	Capacity unspecified.	Determined on project	basis	
MD BAY G	INBAY COOS HEAD		12.5	DA
	Unspecified capacity.	Determined on project	basis.	
MD BEACH	NORTH SPIT	1 9		
	Undetermined capacify	. Site is on beach.		
IGNIFICANT	HABITAT SITES			
AB 1	HENDERSON MARSH		160.0	CON
		swamp; Aquifer recharge		COL
AB 2	TREATMENT LAGOON NORTH		200.0	
	Deflation plain marsh		200.0	
AB 3	TREATMENT LAGOON SOUTH	•	250.0	
5	Deflation plain marsh		230.0	
AB 4	PONY SLOUGH	•	60.0	_
	Major marsh.		00.0	
AB 5	DREDGE SPOILS			
nd J				
AD 6	Snowy plover nesting a	area.		
AB 6	HUNGRYMAN COVE			
ND 7	Great Blue Heron rook	ery.		
AB 7	CATCHING SLOUGH			
	Great Blue Heron rook	ery.		

CODE	NAME/Comments	Size	Zone
		(Acres)	
MITIGATION	AND RESTORATION SITES		
MIT L1	OXFORD WAY RD.	6.0	NA
	Breach or remove dike.		
MIT L4	ACROSS FROM CHARLESTON BASIN	5.5	WDR
	Remove sand to create marsh beside channel.	_	
MIT L5	LOWER SOUTH SLOUGH	5.4	CS
	Remove dike.		
MIT M5	SPOILS ISLANDS	22.3	CS
	Lower elevation to promote tidal flushing.		
MIT U12	LILIENTHAL BOOM SITE	36.0	RS
	Breach dike and remove tidegates.		-
MIT U16A	NORTH OF CHRISTIANSON'S RANCH	3.7	RS
	Remove tidegate and breach berm.	4.0	70
MIT U30B	SUMNER ROAD	4.8	RS
	Breach dike.	2.7	NA
MIT U31	CATCHING SLOUGH	2.7	DIA
MTD TTAA	Enlarge breaches. ISTHMUS SLOUGH	20.0	RS
MIT U44		20.0	RD
MIT U51A	Remove tidegate and breach berm. DAVIS SLOUGH	24.0	NA
MIT US IA	Breach or remove dikes and/or tidegate.	24.0	1421
MIT U51B	DAVIS SLOUGH	16.0	RS
MII UJIB	Remove tidegates.	1010	1.45
MIT U59A	COALBANK SLOUGH	25.0	NA
MII UJJA	Replace or add culvert.		
MIT U59B	COALBANK SLOUGH	35.0	NA
	Breach berm.		

CODE	NAME/Comments	Size	Zone
		(Acres)	
ATER-DEPE	NDENT DEVELOPMENT SITES		
WDD 115	JETTY SITE 68B		WD
WDD 120	Jetty maintenance and recreation access. NORTH SLOUGH		8 WD
WDD 164	Aquaculture and access. UPPER BAY		14 WI
WDD 176	Barge loading for jetty rock. PIERCE POINT		16 WI
WDD 231	Log handling and storage. HARBOR TUG AND BARGE		20A W
WDD 237	Tug and barge facilities. COOS/MILLICOMA SITE		20B V
WDD 243	Barge loading. ALLEGANY		20C V
DD 249	Log loading and handling. DELLWOOD		20D W
DD 268	Log loading and handling. ISTHMUS SLOUGH		28D 3
7DD 318	Expand existing industrial and commercial uses MILLINGTON		36 UW
DD 337	Water-dependent industry. SOUTH SLOUGH		60 UW
TDD 346	Recreation. HANSEN'S LANDING		61 UK
IDD 36	LOWER BAY-NORTH SPIT Industry, commerce.		3e wo
7DD 384	CHARLESTON Urban water-dependent uses.		66 UV
DD 48	HENDERSON MARSH Heavy industry.		5 WI
7DD 61	LOWER BAY SHORELINE Industry and water access.		6 WI
DD 83	LOWER BAY Deep-water access.		56 UV

		HABITAT S	UMMARI			
HABITAT CLAS	SS/	AREA IN ACRES	PERCENT OF	ACRES IN	ACRES	ACRES IN
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABITATS	3	13300.5	100.0%	8251.3	2492.8	2556.4
Unconsolida	ted Bottom				ι	
1.1	Inspecified Type	5084.8	38.2%	1370.4	1777.5	1936.9
1.1.1	Sand	40.3	0.3%	27.6	0.0	12.7
Aquatic Bed					-	
1.3	Unspecified Type	5.0	0.0%	0.0	0.7	4.3
1.3.9	Seagrass	144.5	1.1%	114.6	10.7	19.2
1.3.10	Algae	149.5	1.1%	67.4	25.3	11.0
Shore						
2.1	Inspecified Type	59.5	0.4%	24.3	35.2	0.0
	Sand	390.3	2.9%	269.0	36.1	85.2
	Sand/Mud (Mixed)	21.9	0.2%	16.6	5.3	0.0
	Mud	186.0	1.48	117.8	39.3	28.9
	Wood Debris/Organic	6.8	0.1%	3.8	0.0	3.0
	Cobble/Gravel	11.9	0.1%	8.5	3.4	0.0
	Boulder	3.9	0.0%	1.8	2.1	0.
2.1.8	Bedrock	10.7	0.1%	2.1	8.6	0.0
Flat						
2.2	Unspecified Type	198.7	1.5%	165.2	22.0	11.
2.2.1	Sand	86.6	0.7%	82.1	0.0	4.
2.2.2	Sand/Mud (Mixed)	1282.4	9.6%	1024.8	40.5	217.
2.2.3	Mud	1925.1	14.5%	1768.1	114.0	43.0
Aquatic Bed						
2.3	Unspecified Type	380.5	2.9%	275.7	26.1	78.
2.3.9	Seagrass	882.6	6.6%	819.4	38.1	25.
2.3.9(1)	Seagrass on Sand	16.4	0.1%	16.4	0.0	0.
2.3.9(2)	Seagrass on Sand/Mud	287.0	2.28	265.8	5.2	16.
	Seagrass on Mud	27.7	0.2%	15.0	12.7	0.
2.3.9/10	Seagrass/Algae	72.8	0.5%	56.3	13.7	2.
2.3.9/10(2)	" on Sand/Mud	102.7	0.8%	88.4	0.0	14.
2.3.9/10(6)	on Cobble/Gravel	24.1	0.2%	23.5	0.6	0.
2.3.10	Algae	102.9	0.8%	83.8	17.9	1.
2.3.10(6)	" on Cobble/Gravel	8.2	0.18	8.2	0.0	0.
2.3.10(8)	" on Bedrock	51.9	0.4%	48.9	3.0	0.
Beach/Bar						
	Sand	31.4	0.2%	17.6	11.3	2.
	Sand/Mud	8.2	0.1%	8.2	0.0	0.
2.4.3	Mud	15.5	0.1%	15.5	0.0	0.0
Tidal Marsh						
	Unspecified Type	269.9	2.0%	198.0	59.3	12.
2.5.11	Low Salt Marsh	431.1	3.2%	375.5	47.5	8.
2.5.12	High Salt Marsh	997.5	7.5%	866.2	131.3	0.
2.5.13	Fresh Marsh	28.0	0.2%	4.8	5.4	17.



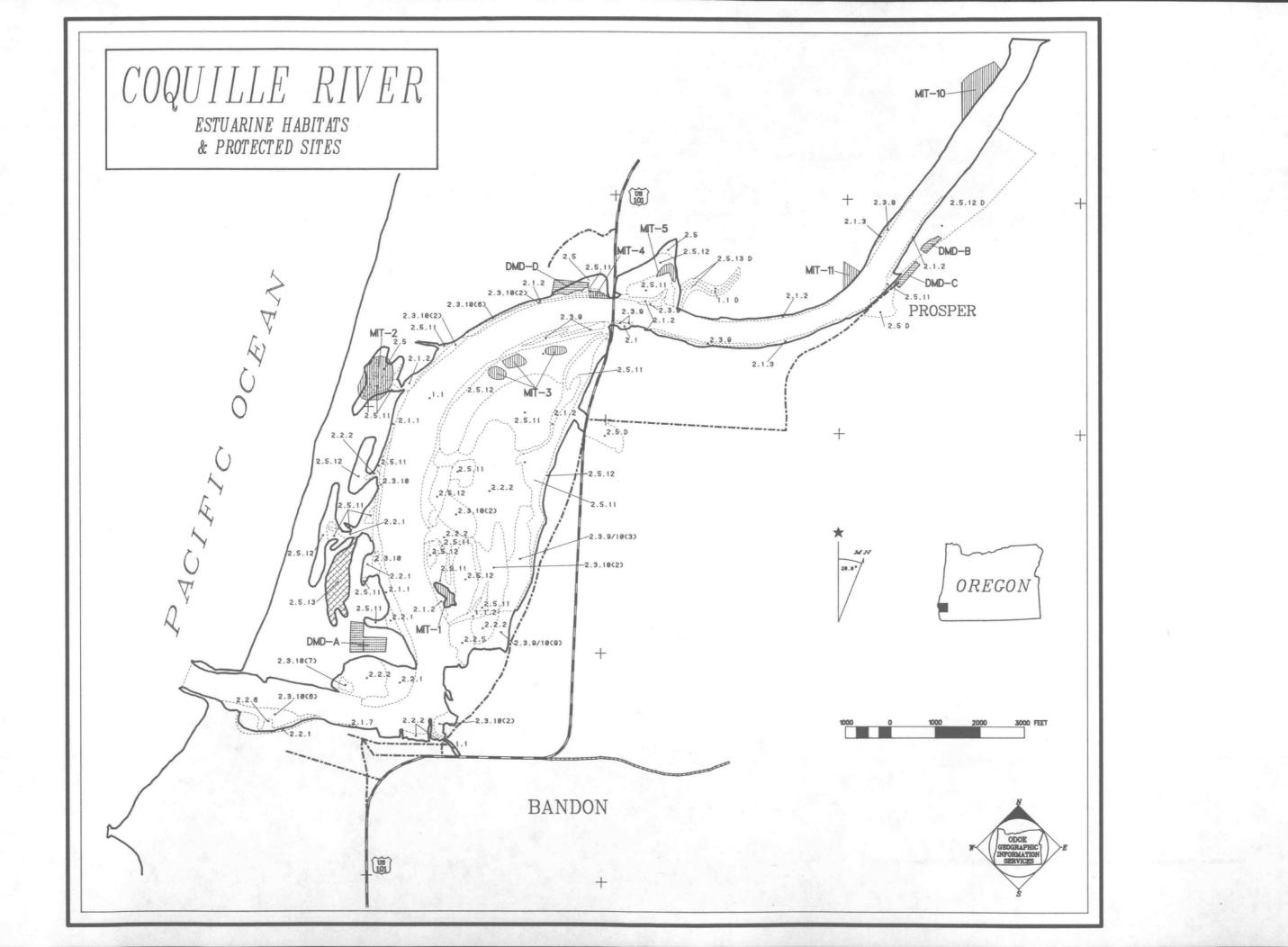
SHORELAND ZONING SUMMARY

1

HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

Total Shorel	land Area: 726.5acres				MANAGEMENT			Uncon- solida-		Aquatic		Chang		Aquatic	Beach/ Bar	Tidal Marsh	
		Area			CLASS	Total	SUBTIDAL	ted	Bottom	Bed	INTERTIDAL	Shore	Flat	Bed	Bar	Marsh	
CLASS/Code	Zone	In Acres	% Shore	% Class	AND UNIT	Area		Bottom		1.2	2	2.1	2.2	2.2	2.4	2.5	
							1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5	
URBAN		164.3	22.6		TOTAL	1081.7	475.5	475.5	0.0	0.0	606.2	79.4	149.3	102.5	0.0	275	
C-3	Marine Commercial	12.2	1.7	7.4	NATURAL	532.8	3.8	3.8	0.0	0.0	529	34.7	138.3	83.3	0.0	272.7	
CD-2	Controlled Development - 2	42.1	5.82	5.6	INTOINID	552.00											
GC	General Commercial*	5.0	0.7	3.0	NA 7	41.5	-	-	-	-	41.5	-	31.0	10.5	-	-	
HI	Heavy Industrial	36.8	5.1	22.4	NA 10	384.5	3.5	3.5	-	-	381.0	19.6	95.6	63.2	-	202.6	
NR	Natural Resource Management	47.8	6.6	29.1	NA 11	63.3	-	-	-	-	63.3	4.7	11.7	4.5	-	42.4	
	neoerer noboeroo immigonoio				NA 13	11.9	-	-	-	-	11.9	8.4	-	3.5	-	-	
OS	Open Space*	3.2	0.4	1.9	NA 16	31.6	0.3	0.3	-	-	31.3	2.0	-	1.6	-	27.7	
PF	Public Facilities & Parks	17-2	2.41	0.5													
					CONSERVATION	433.1	368.2	368.2	0.0	0.0	64.9	40.4	8.3	14.5	0.0	1.7	
RURAL		562.2	77.4														
					CA 2	5.1	-	-	-	-	5.1	-	3.7	1.4	-	-	
EFU	Exclusive Farm Use	231.7	31.9	41.2	CA 6	0.8	0.8	0.8	-	-	0.0	-	-	-	-	-	
EFU-10	Exclusive Farm Use - 10	15.3	2.1	2.7	CA 8	365.1	355.7	355.7	-	-	9.4	6.0	-	3.4	-	-	
F	Forest	50.4	6.9	9.0	CA 12	39.6	-	-	-	-	39.6	27.9	4.6		-	0.2	
IND	Industrial	43.6	6.0	7.7	CA 15	2.5	-	-	-	-	2.5	0.6	-	0.4	-	1.5	
NR	Natural Resource Mgmt	154.1	21.2	27.4	CA 17	20.0	11.7	11.7	-	-	8.3	5.9	-	2.4	-	-	
REC	Recreation Management	55.7	7.7	9.9													
RR-2	Rural Residential - 2	11.5	1.6	2.0	DEVELOPMENT	115.8	103.5	103.5	0.0	0.0	12.3	4.3	2.7	4.7	0.0	0.6	
					DA 1	94.9	94.5	94.5	-	-	0.4	0.4	-	-	-	-	
					DA 14	4.9	1.9	1.9	-	-	3.0	1.5	-	0.9	-	0.6	
*GC and OS a	re plan designations. The corr	esponding zo	ning distric	ts are	DA 18	6.1	4.7	4.7	-	-	1.4	1.4	-	-	-	-	
	ercial (C-2) and Natural Resour				DA 19	2.7	1.7	1.7	-	-	1.0	1.0	-	-	-	-	
respectively					ED 4	2.1	-	-	-	-	2.1	-	2.1	-	-	-	
					ED 5	5.1	0.7	0.7	-	-	4.4	-	0.6	3.8	-	-	

HABITAT SUMMARY


		AREA	PERCENT	ACRES	ACRES	ACRES
HABITAT	CLASS/	IN ACRES	OF	IN	IN	IN
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABI	TATS	1081.7	100.0%	532.8	433.1	115.8
UNCONSOL	IDATED BOTTOM					
1.1	Unspecified Type	472.3	43.7%	0.6	368.2	103.5
1.1.2	Sand/Mud (Mixed)	3.2	0.3%	3.2	-	-
SHORE						
2.1	Unspecified Type	0.8	0.1%	-	0.8	-
2.1.1	Sand	16.8	1.6%	1.7	15.1	-
2.1.2	Sand/Mud (Mixed)	55.0	5.1%	33.0	18.1	3.9
2.1.3	Mud	6.4	0.6%	-	6.4	-
2.1.7	Boulder	0.4	0.0%	-	-	0.4
FLAT						
2.2.1	Sand	25.0	2.3%	20.4	4.6	-
2.2.2	Sand/Mud (Mixed)	110.2	10.2%	107.5	-	2.7
2.2.5	Wood Debris/Organic	7.6	0.7%	7.6	-	-
2.2.6	Cobble/Gravel	6.5	0.6%	2.8	3.7	-
AQUATIC	BED					
2.3.9	Seagrass	10.9	1.0%	5.1	5.8	-
2.3.9/10	(3) " on Mud	21.2	2.0%	21.2	-	-
2.3.9/10	(5) " on Wood/Organic	8.4	0.8%	8.4	-	-
2.3.10	Algae	4.5	0.4%	4.5	-	-
2.3.10(2	?) " on Sand/Mud	44.3	4.1%	33.6	6.0	4.7
2.3.10(6) " on Cobble/Gravel	11.6	1.1%	8.9	2.7	-
2.3.10(7) " on Boulder	1.6	0.18	1.6	-	-
TIDAL MA	RSH					
2.5	Unspecified Type	13.8	1.3%	12.7	1.1	-
2.5.11	Low Salt Marsh	129.2	11.9%	128.0	0.6	0.6
2.5.12	High Salt Marsh	132.0	12.2%	132.0	-	-

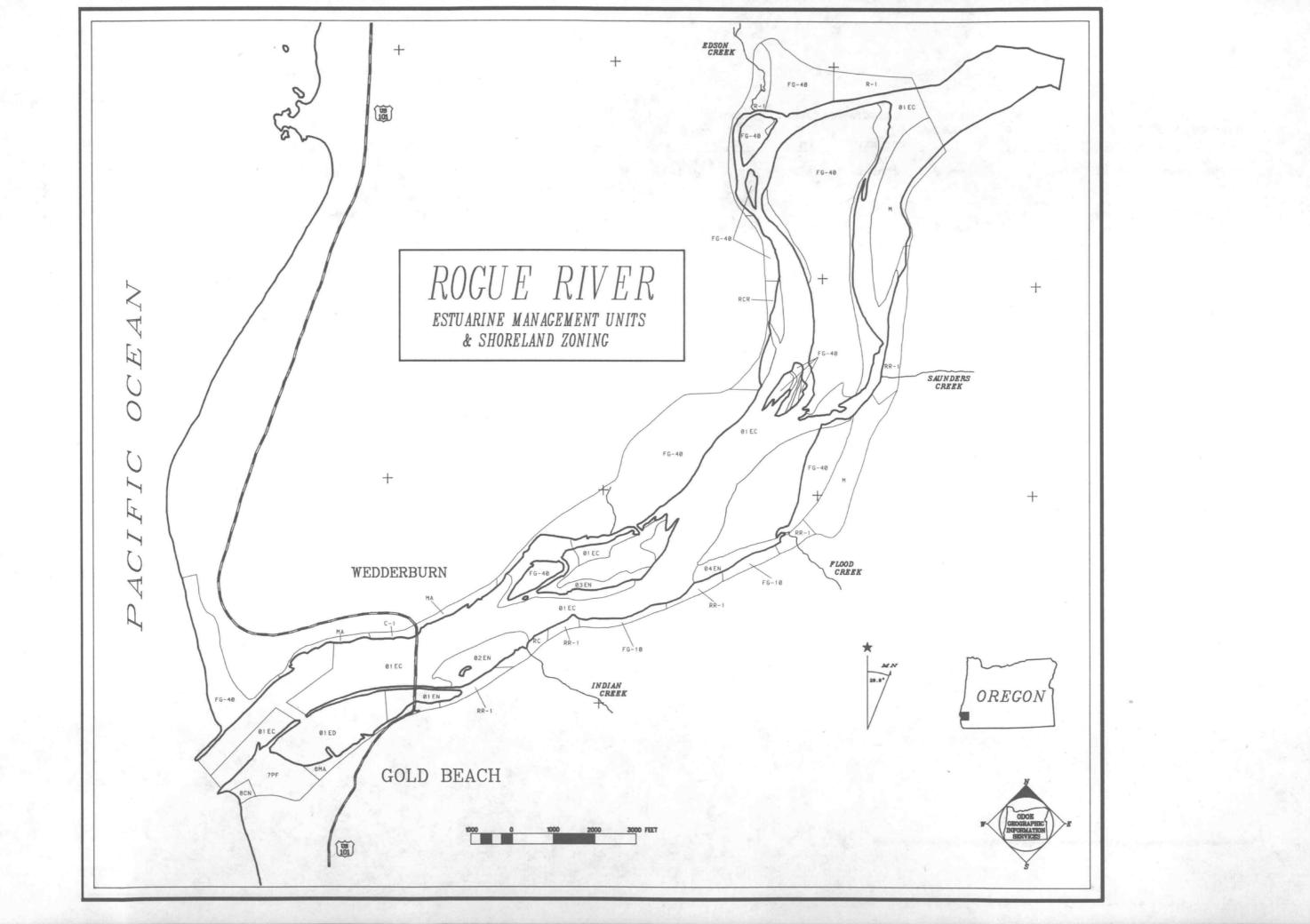
SPECIAL SHORELAND SITES

CODE	NAME/Comments		Size	Zone
	a na na mara la		(Acres)	
REDGED MA	TERIAL DISPOSAL SITES	Capacity		
		(Cubic Yards)		
DMD A	NORTH SPIT	100,000	10.0	NR
OMD B	PROSPER 1	108,000	2.0	IND
OMD C	PROSPER 2	8,000	3.0	IND
OMD D	GEORGIA PACIFIC		7.0	IND
The follow	ing sites are not presently	needed for specific	dredging pro	jects bu
are design	ated for water-dependent us	e and could accomodat	e spoil disp	osal.
OMD E	MOORE MILL			
OMD F	FERRY CREEK		10.0	
IAB 1	FRESHWATER WETLANDS		16.5	11 B
MITIGATION	AND RESTORATION SITES			
MIT 1	DREDGE SPOIL ISLAND		3.0	10 N
	Grade to create high a	salt marsh.		
MIT 10	Unnamed site		12.0	EFU-
	Remove dike and grade	to create salt marsh	•	
AIT 11	PROSPER		4.0	EFU-
	Create channel and sal	lt marsh.		
MIT 2	NORTH SPIT		13.5	11 N
MIT 3	DREDGE SPOIL ISLANDS		12.0	10NA
	Scalp to create salt m	arsh.		
MIT 4	US 101 WEST		1.2	15 C
MIT 5	US 101 EAST		2.0	16 N
8 TIN	Unnamed site.		1.5	
	Remove bank to create	high salt marsh. Not	t mapped.	
MIT 9	RANDOLPH SLOUGH		6.0	
	Construct tidal channe	el. Not mapped.		
WATER-DEPE	NDENT DEVELOPMENT SITES			
JDD 14	BUILLARDS DOCK			IND

CODE	NAME/Comments		Size	Zone
			(Acres)	
DREDGED MAT	TERIAL DISPOSAL SITES	Capacity		
		(Cubic Yards)		
DMD A	NORTH SPIT	100,000	10.0	NR
		108,000	2.0	IND
DMD B	PROSPER 1	8,000	3.0	IND
DMD C	PROSPER 2	8,000		
DMD D	GEORGIA PACIFIC		7.0	IND
	ing sites are not presently			
are designa	ated for water-dependent us	e and could accomod	date spoil dispo	osal.
DMD E	MOORE MILL			
DMD F	FERRY CREEK		10.0	
SIGNIFICAN	T HABITAT SITE			
нав 1	FRESHWATER WETLANDS		16.5	11 NA
MITIGATION	AND RESTORATION SITES			
MIT 1	DREDGE SPOIL ISLAND		3.0	10 NA
	Grade to create high s	alt marsh.		
MIT 10	Unnamed site		12.0	EFU-1
HII IV	Remove dike and grade	to create salt mar		
MIT 11	PROSPER	co orcate pare mi	4.0	EFU-1
MLI II	Create channel and sal	t marsh.	100	210
MIT 2	NORTH SPIT		13.5	11 NA
MIT 3	DREDGE SPOIL ISLANDS		12.0	10NA
MII J	Scalp to create salt m	arch	12.00	101111
MIT 4	US 101 WEST		1.2	15 CA
MIT 5	US 101 EAST		2.0	16 NA
MIT 8	Unnamed site.		1.5	10 111
MIT 8	Remove bank to create	high calt march	Not mapped.	
MTM 0		nigh sait marsh.	6.0	
MIT 9	RANDOLPH SLOUGH Construct tidal channe	1. Not mapped.	0.0	
WATER-DEPER	NDENT DEVELOPMENT SITES			
WDD 14	BULLARDS DOCK			IND

WDD	14	BULLARDS DOCK	 IND
WDD	20	Small bulk-loading facility. PROSPER	 IND
WDD	3	Boatbuilding. BANDON WATERFRONT (Marina)	 C3
WDD	40	RIVERTON	 IND
		Small-scale industry. Not mapped.	
WDD	8	MOORE MILL	 HI
WDR	16	ROGGE MILL	 IND

SHORELAND ZONING SUMMARY

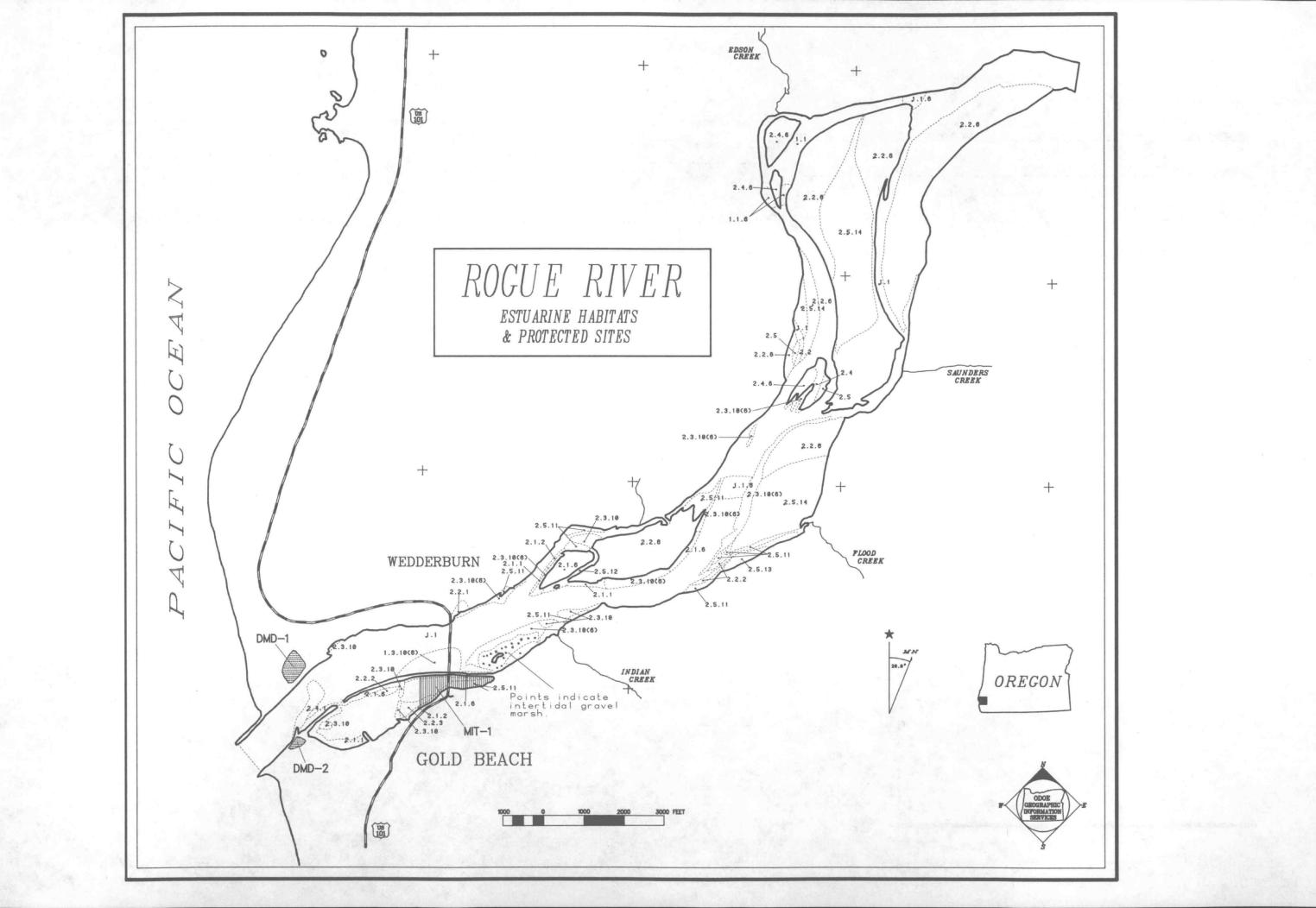

per la companya de la

HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

Uncon-

Total Shoreland Area: 1094.8 acres

TOCAL BHOL	erand Area: 1094.0 acres							Oncour								
					MANAGEMENT	mate 1	GIDBITDAT	solida-	Rock Bottom	Aquatic	THURSDAY	Channel		Aquatic		
		Area			CLASS	Total	SUBTIDAL	ted	BOLLOW	Bed	INTERTIDAL	Shore	Flat	Bed	Bar	Marsh
CLASS/Code	Zone	In Acres	Shore	% Class	AND UNIT	Area		Bottom				~ ~				
							1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
URBAN	(136.9	12.5		TOTAL	880.0	574.7	557.8	0.0	16.9	305.3	29.2	160.2	60.4	11.1	44.4
6MA	Marine Activity	14.0	1.3	10.2	NATURAL	115.6	18.8	18.8	0.0	0.0	96.8	7.9	33.0	24.9	-	31.0
7PF	Public Facility	40.3	3.7	29.4												
8CN	Beaches & Dunes Conservation	4.2	0.4	3.1	EN 1	16.5	8.0	8.0	-	-	8.5	3.3	0.8	3 -	-	4.4
C-1	Commercial Light	5.0	0.5	3.6	EN 2	32.5	0.3	0.3	-	-	32.2	-	13.9	11.4	-	6.9
FG-40	Forest Grazing	57.0	5.2	41.6	EN 3	52.1	6.2	6.2	-	-	45.9	4.6	17.4	13.5	-	10.4
MA	Marine Activity	16.5	1.5	12.0	EN 4	14.5	4.3	4.3	-	-	10.2	-	0.9	- (-	9.3
RURAL		957.9	87.5		CONSERVATION											
6MA	Marine Activity	0.6	0.1	0.1	EC 1	642.8	461.3	444.4	-	16.9	181.5	6.3	122.1	31.6	8.1	13.4
FG-10	Forest Grazing - 10	18.0	1.6	1.9												
FG-40	Forest Grazing - 40	658.9	60.2	68.8												
M1	Industrial	35.9	12.4	14.2	DEVELOPMENT											
R-1	Residential - 1	46.5	4.2	4.9				and the second second								
					ED 1	121.6	94.6	94.6	-	-	27.0	15.0	5.1	3.9	3.0	-
RC	Rural Commercial	8.7	0.8	0.9												
RCR	Recreational Commercial-															
	Residential	24.3	2.2	2.5												
RR-1	Rural Residential - 1	65.0	5.9	6.8												

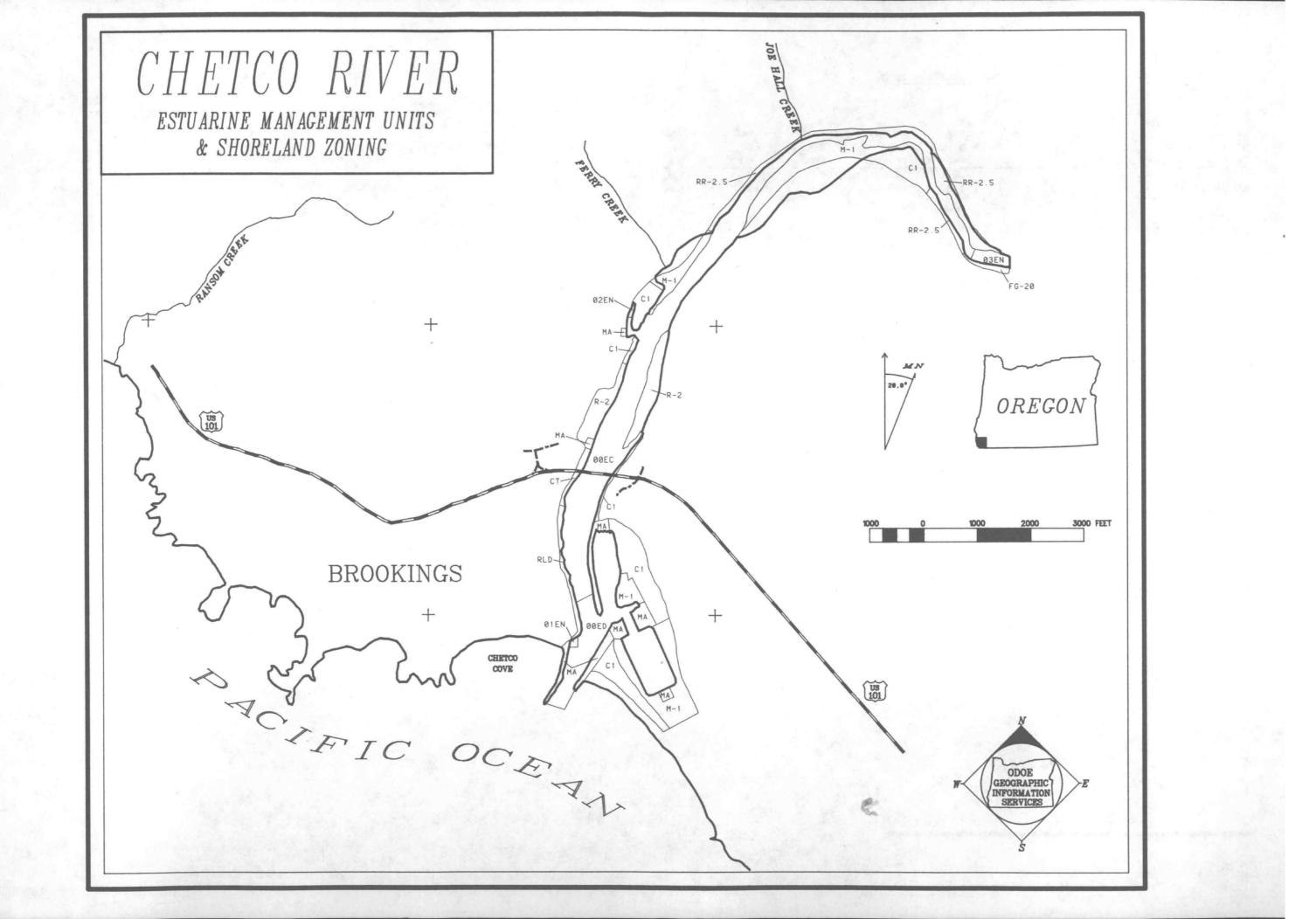

HABITAT SUMMARY

		3 73 73 73	DEDOGER	TOPRO	AGDRO	AGDRO
	200/	AREA IN ACRES	PERCENT OF	ACRES	ACRES	ACRES
HABITAT CL Code	Subclass	IN ACKES	ESTUARY	EN	BC	ED
Code	SUDCLASS		ESTUARI	EN	BC	PD
ALL HABITA	TS	880.0	100.0%	115.6	642.8	121.6
UNCONSOLID	ATED BOTTOM					
1.1	Unspecified Type	540.9	61.5%	18.8	427.5	94.6
1.1.6	Cobble/Gravel	16.9	1.9%	-	16.9	-
AQUATIC BE	D					
1.3.10(6)	Algae on Cobble/Gravel	16.9	1.9%	-	16.9	-
SHORE						
2.1.1	Sand	16.1	1.8%	3.7	2.9	9.5
2.1.2	Sand/Mud (Mixed)	3.1	0.4%	2.1	-	1.0
2.1.6	Cobble/Gravel	10.0	1.1%	2.1	3.4	4.5
FLAT						
2.2	Unspecified Type	1.7	0.2%	-	1.7	-
2.2.2	Sand/Mud (Mixed)	5.4	0.6%	0.9	2.7	1.8
2.2.3	Mud	4.1	0.5%	0.8	-	3.3
2.2.6	Cobble/Gravel	149.0	16.9%	31.3	117.7	-
AQUATIC BE	D					
2.3.10	Algae	12.0	1.4%	5.2	2.9	3.9
2.3.10(6)	" on Cobble/Gravel	48.4	5.5%	19.7	28.7	-
BEACH/BAR						
2.4	Unspecified Type	2.0	0.2%	-	2.0	-
2.4.1	Sand	8.2	0.9%	-	5.2	3.0
2.4.6	Cobble/Gravel	0.9	0.18	-	0.9	-
TIDAL MARS	Н					
2.5.11	Low Salt Marsh	32.9	3.7%	20.7	12.2	-
2.5.12	High Salt Marsh	6.0	0.7%	5.0	1.0	-
2.5.13	Fresh Marsh	5.3	0.6%	5.3	-	-
2.5.14	Shrub Marsh	0.2	0.0%	-	0.2	-

SPECIAL SHORELAND SITES

CODE	NAME/Comments	
DREDGED MATE	RIAL DISPOSAL SITES	Ca
		(Cub
DMD 1	NORTH JETTY UPLAND	
DMD 2	SOUTH JETTY UPLAND	
DMD 3	SOUTH JETTY SURF ZONE	
	Not mapped.	
DMD 4	SOUTH BOAT BASIN	
DMD 5	WEST BOAT BASIN	
	Not mapped.	
MITIGATION A	ND RESTORATION SITE	
	1	
MIT 1	EAST BOAT BASIN	
WATER-DEPEND	ENT DEVELOPMENT SITES	
WDD 1	SAUSE BROTHERS	
	Marina	
WDD 2	COAST GUARD STATION	

	Size	Zone
	(In Acres)	
Capacity bic Yards)		
	7.0	CN
	1.5	7PF
		CN
		7PF
		6MA
		770.7
		EN
		6MA
		6MA

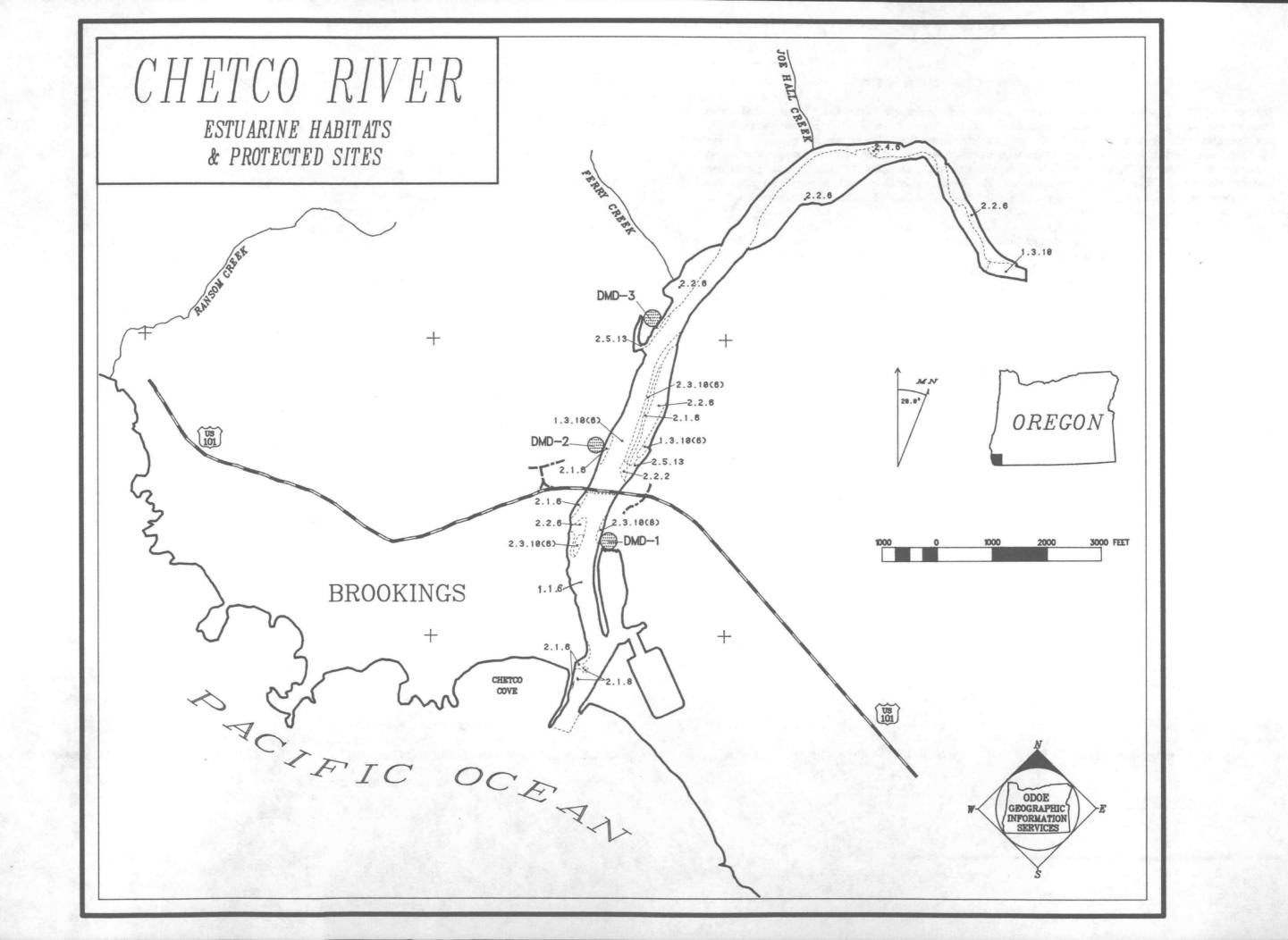

SHORELAND ZONING SUMMARY

Total Shoreland Area: 177.7 acres

HABITAT CLASS BY MANAGEMENT UNIT (Area in Acres)

		Area		
CLASS/Cod	de Zone	In Acres	% Shore	<pre>% Class</pre>
URBAN		109.0	61.4	
C1	Commercial Light	36.6	20.6	33.6
CT	Commercial Tourist	2.6	1.5	2.4
M-1	Industrial	26.3	14.8	24.2
MA	Marine Activity	17.3	9.7	15.8
R-2	Residential 2	21.3	12.0	19.5
RLD	Residential Low Density	5.0	2.8	4.6
RURAL		68.7	38.6	
C1	Commercial Light	12.6	7.1	18.3
FG-20	Forest Grazing 20	1.9	1.1	2.8
M-1	Industrial	30.2	17.0	44.0
MA	Marine Activity	0.8	0.5	1.2
RR-2.5	Rural Residential 2.5	23.1	13.0	33.7

MANAGEMENT CLASS AND UNIT	Total Area	SUBTIDAL	Uncon- solida- ted Bottom	Rock Bottom	Aquatic Bed	INTERTIDAL	Shore	Flat	Aquatic Bed	Beach/ Bar	Tidal Marsh
		1.	1.1	1.2	1.3	2.	2.1	2.2	2.3	2.4	2.5
TOTAL	171.1	152.4	0.0	0.0	152.4	18.7	6.1	2.7	5.8	0.0	4.1
NATURAL	4.7	3.8	0.0	0.0	3.8	0.9	0.5	0.0	0.0	0.0	0.4
en 1	0.5	0.0	-	-	_	0.5	0.5	-	-	-	0.0
EN 2	0.4	0.0	-	-	-	0.4	-	-	-	-	0.4
EN 3	3.8	3.8	-	-	3.8	0.0	-	-	-	-	0.0
CONSERVATION											
EC 0	110.8	94.0	-	-	94.0	16.8	4.6	2.7	5.8	-	3.7
DEVELOPMENT											
ED 0	55.6	54.6	54.6	-	-	1.0	1.0	-	-	-	0.0



HABITAT SUMMARY

		AREA	PERCENT	ACRES	ACRES	ACRES
HABITAT CI	LASS/	IN ACRES	OF	IN	IN	IN
Code	Subclass		ESTUARY	EN	EC	ED
ALL HABITA	ITS	171.1	100.0%	4.7	110.8	55.6
UNCONSOLII	DATED BOTTOM					
1.1.6	Cobble/Gravel	54.6	31.9%	-	-	54.6
AQUATIC BE		2.0	0.00	2.0		
1.3.10	Algae	3.8	2.2%	3.8	-	0
1.3.10(6)	Algae on Cobble/Gravel	94.0	54.9%	-	94.0	0
SHORE						
2.1.6	Cobble/Gravel	5.9	3.4%	0.5	4.6	0.8
2.1.8	Bedrock	0.2	0.1%	-	-	0.2
FLAT						
2.2.2	Sand/Mud (Mixed)	0.7	0.4%	-	0.7	0
2.2.6	Cobble/Gravel	2.0	1.2%	-	2.0	0
AQUATIC BE	D					
2.3.10(6)	Algae on Cobble/Gravel	5.1	3.0%	-	5.1	0
2.3.10(8)	Algae on Bedrock	0.7	0.48	-	0.7	0
TIDAL MARS	H					
2.5.13	Fresh Marsh	4.1	2.48	0.4	3.7	0

CODE	3	NAME/Comments		Size	Zone
			2011년 1월 1987년 1월 19	(In Acres)	
DRED	GED MATE	RIAL DISPOSAL SITES	Capacity		
			(Cubic Yards)		
DMD	1	BOAT BASIN 1 (ESWD 2)		1.7	MA
DMD	2	ESWD 6		1.5	MA
DMD	3	ESWD 7		1.7	MA
WATE		DIKE			6M/
UDW		Angler access.			OP
WDD	2	SPORTBOAT BASIN East end only. Boat ramp.			6MA
WDD	3	PORT OF BROOKINGS Commercial fishing service		2.5	6 M /
WDD	4	MARINE TRAVELLIFT Marina.			6MA
WDD	5	COAST GUARD STATION		3.0	6MA
WDD	6	KEMP SITE Sport boat moorage.		10.0	6MA
WDD	7	SNUG HARBOR Tourist marina.		14.0	6МА

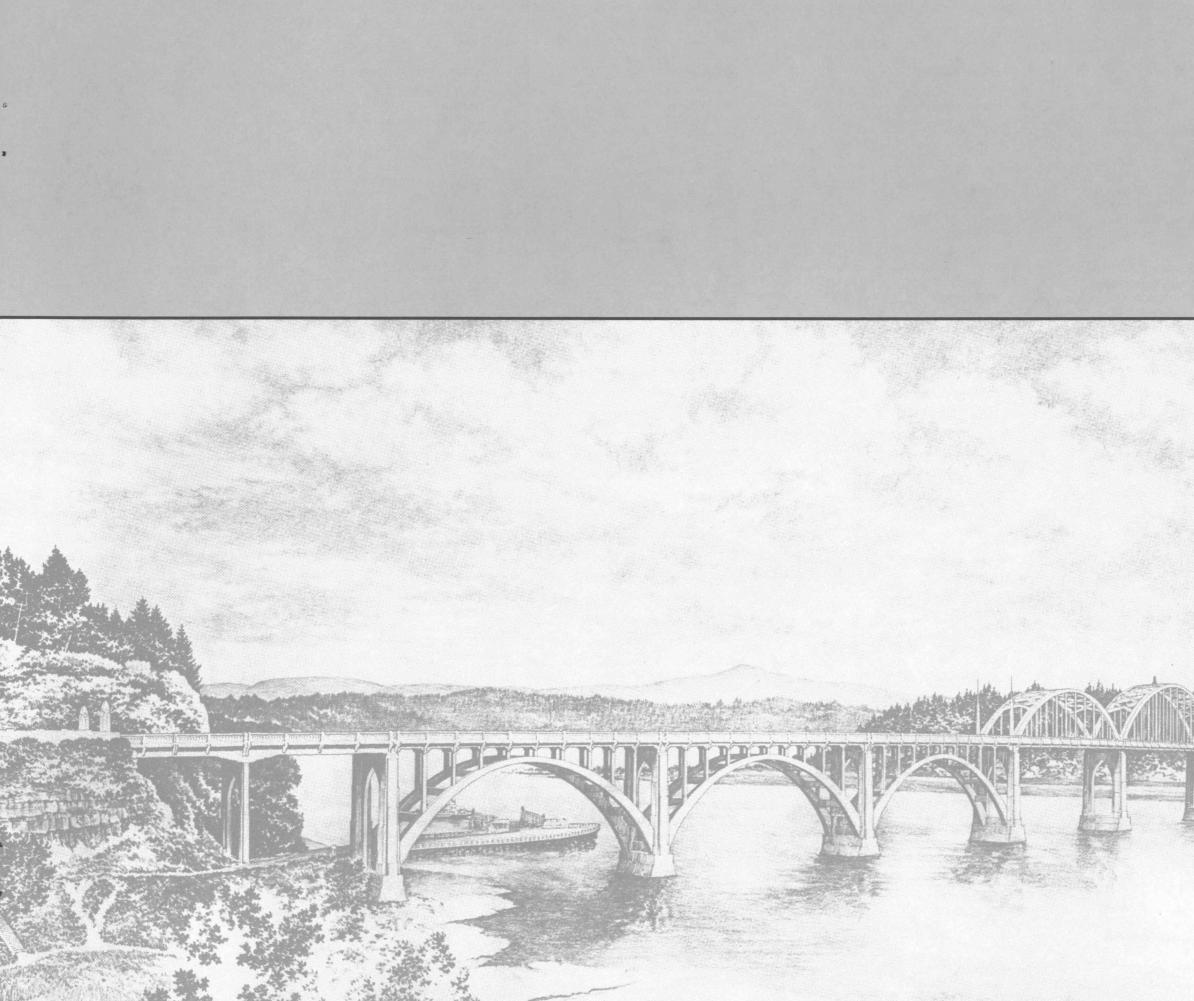
SPECIAL SHORELAND SITES

UNMAPPED SPECIAL SHORELAND SITES

Tables for the individual estuaries list four types of "special" shoreland sites. These include dredged material disposal sites, significant shoreland habitats, mitigation and restoration sites, and water dependent development sites. A number of the sites designated by local governments are not shown on the maps included in this book. Some of the sites are not specifically mapped by the local government, and many are upriver of the portion of the estuary shown on the maps in this book. For a number of sites definite mapping of the special site simply was not available.

For three estuaries (Yaquina Bay, Siuslaw River Estuary and Umpqua River Estuary) there was not sufficient space to list all of the unmapped sites with the maps. Information on those sites is included below.

CODE	NAME/Comments	DMD Capacity	Size	Zone
	×	(Cubic Yards)	(In Acres)	


COLUMBIA RIVER

Priority II Dredged Material Disposal Sites

DMD	19S	FORT STEVENS HWY 1	306,000	19.0	
DMD	20AS	WARRENTON LUMBER	56,000	3.5	
DMD	20S	SEWAGE LAGOON	516,000	32.0	
DMD	21S	FORT STEVENS HWY 2	290,000	18.0	
DMD	22S	NE 1ST ST	306,000	19.0	
DMD	235	(Unnamed Site)	2,400,000	150.0	
DMD	24S	(Unnamed Site)	1,000,000	67.0	
DMD	26S	(Unnamed Site)	209,000	13.0	
DMD	27S	(Unnamed Site)	145,000	9.0	
DMD	44	JOHN DAY RIVER (RM	39) 720,000	45.0	
DMD	90	WESTPORT (RM 43)	112,000	70.0	
SIUS	LAW RIVER				
Dred	lged Materi	al Disposal Sites			

DMD	37	DAVIDSON MILL	187	,500	16.6	
DMD	38	PERRIN'S LANDING	20	,000	1.0	F
DMD	39	PERRIN'S LANDING	SOUTH 375	,000	29.2	E-25
DMD	40	DAVIDSON MILL	23	,500	2.9	I
DMD	42	DAVIDSON MILL	225	,000	14.0	FU
DMD	43	RUSSEL'S MARINA	420	,000	35.0	F
DMD	44	US PLYWOOD	180	,000	23.0	FU
DMD	45	MAPLETON	38	,900	3.0	I
DMD	47	DAVIDSON MILL	13	,600	1.7	F
DMD	48	DAVIDSON MILL	275	,000	22.0	RR

CODE	NAME/Comments	DMD Capacity	Size	Zone
		(Cubic Yards)	(In Acres)	
UMPQUA RIVI	<u>IR</u>			
Dredged Mat	erial Disposal Site			
DMD 10	SMITH RIVER	45,000	9.0	F
	Located at RM 16.			
Significant	: Habitat Sites			
HAB 9	BRAYNARD CREEK WETLAND			
HAB 15	DEANS CREEK WETLAND			
HAB 16	HINSDALE RANCH WETLAND			
YAQUINA BAY	<u>r</u>			
Dredged Mat	cerial Disposal Sites			
DMD 11	SINNHUBER	37,000	2.2	TC
DMD 15	BOONE SLOUGH	15,000	1.0	AC40
DMD 16	BOONE SLOUGH	100,000	12.4	AC40
DMD 19A	TOKYO SLOUGH	40,000	7.4	MP
DMD 23	PUBLISHER'S PAPER	100,000	12.5	IP
DMD 7	COQUILLE POINT	30,000	7.5	MP
Significant	: Habitat Site			
нав 15	BOONE AND NUTE SLOUGHS		400.0	TC
	Extensive waterfowl habit	tat.		
Mitigation	and Restoration Sites			
MIT 13	PUBLISHER'S		0.0	
MIT 15	Create additional breache FLESHER SLOUGH		15.0	MW
MIT 2	Bridge or increase culves HUSS PROPERTY Remove tidegate.	rt size.	3.0	
MIT 3	BLACKBERRY HILL Enlarge culvert.		3.0	MW
MIT 4	REINOEHL TROUT HATCHERY Enlarge culvert or instal	ll bridge.	2.5	
MIT 5	SHERMAN PROPERTY Enlarge culvert.		2.0	MW
MIT 6/7	LOWER BOONE'S & NUTE'S SLO Remove dikes.	DUGHS	600.0	FU
	SHERMAN PROPERTY Enlarge culvert. LOWER BOONE'S & NUTE'S SLO			

APPENDIX

FOR FURTHER INFORMATION ABOUT ESTUARY PLANS

he information presented in the Estuary Plan Book is a general summary of the requirements of locally adopted plans. In addition, local plans are occasionally amended. Detailed, up-to-date information about specific requirements of a particular plan are available from individual city and county planning offices. All counties have a planning department with one or more fulltime staff. Except where indicated, cities also have professional planners, although many cities rely on their county or a regional planning agency for assistance in implementing their estuary plan.

Copies of the comprehensive plans and implementing ordinances are also maintained by the Department of Land Conservation and Development at both its main office in Salem and its coastal field office in Newport. In addition, the Department of Fish and Wildlife and Division of State Lands can also provide important information for interpreting and applying plan policies.

Columbia River Estuary

CREST P.O. Box 175 Astoria 97103 325-0435

Clatsop County Box 179 Astoria 97103 325-8611

Astoria 1095 Duane Street Astoria, 97103 325-5821

Warrenton Box 250 Warrenton 97146 861-2233

Hammond⁷ Box 161 Hammond 97121 861-2712

Necanicum River Estuary

Clatsop-Tillamook Intergovernmental Council Box 488 Cannon Beach 97110 436-1156 Gearhart

Drawer D Gearhart 97138 738-5501

Seaside 851 Broadway Seaside 97138 738-5511

Nehalem Bay

Tillamook County 201 Laurel Avenue Tillamook 97401 842-3408

Nehalem⁸ Box 144 Nehalem 97131 368-5627

Wheeler⁸ Box 177 Wheeler 97147 368-5767

Tillamook Bay

Tillamook County (see address above) Garibaldi⁸ Box 708 Garibaldi 97118 322-3327 Bay City⁸ Box 307 Bay City 97107

377-2288 Tillamook City 210 Laurel Avenue Tillamook 97141 842-3443

Netarts Bay, Sand Lake, and Nestucca **River Estuary**

Tillamook County 201 Laurel Avenue Tillamook 97401 842-3408

Salmon River Estuary

Lincoln County 210 SW 2nd Street Newport 97365 265-6611

Siletz River Estuary

Lincoln County 210 SW 2nd Street Newport 97365 265-6611

Lincoln City Box 50 Lincoln City 97367 996-2151

Yaquina Bay

Lincoln County 210 SW 2nd Newport 97365 265-6611

Newport 810 SW Alder Newport 97365 265-5331

Toledo Box 220 Toledo 97391 336-2247

Alsea Bay

Lincoln County 210 SW 2nd Newport 97365 265-6611

Waldport⁹ City Hall Box K Waldport 97394 563-3561

Siuslaw River Estuary

Lane County 128 East 8th Avenue Eugene 97401 687-3958

Florence Box 340 Florence 97439 997-3436

Umpgua and Smith

River Estuary Douglas County Courthouse Annex #2 205 SE Jackson St. Roseburg 97470 673-1111

Reedsport 451 Winchester Ave. Reedsport 97467 271-3603

Coos Bay Coos County

Courthouse Annex 290 N. Central Coquille 97423 396-3121 Ex. 210

City of Coos Bay 500 Central Coos Bay 97420 269-8919

North Bend Box B North Bend 97459 756-0405

Coquille River Estuary

Coos County Courthouse Annex 290 N. Central Coquille 97423 396-3121 Bandon Box 67

Bandon 97411 347-2437

Rogue River Estuary

Curry County Box 746 Gold Beach 97444 247-7054

Gold Beach Box 747 Gold Beach 97444 247-7029

Chetco River

Curry County Box 746 Gold Beach 97444 247-7054

Brookings 898 Elk Drive Brookings 97415 469-2163

and Development

1175 Court St. NE Salem 97310 373-0050

313 SW 2nd Suite B Newport 97365 265-8869

Division of State Lands

1600 State St. Salem 97310 378-3805

506 SW Mill Portland 97208 229-5680

Marine Science Drive Bldg. 3 Newport 97365 867-4741

- Council (CTIC).
- plans.
- estuary plan implementation.

Department of Land Conservation

Department of Fish and Wildlife Environmental Management Section

⁷ The Town of Hammond does not have a professional planner. Technical assistance for plan implementation is provided by both CREST and the Clatsop-Tillamook Intergovernmental

⁸ Nehalem, Wheeler, Garibaldi, and Bay City do not have professional planners. These cities and the City of Tillamook generally rely on Tillamook County to implement their estuary

⁹ Waldport does not have a professional planner. The city relies on Lincoln County for

REFERENCES

- Bella, D. A., and P C. Klingeman. 1973. General Planning Methodologies for Oregon's Estuarine Natural Resources. Corvallis: Oregon State University.
- Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1977. Classification of Wetlands and Deepwater Habitats of the United States. Washington, D. C.: U. S. Fish and Wildlife Service.
- Morgan, J., L. M. Marston, and R. Holton. 1977. An Annotated Bibliography of the Columbia River Estuary. Corvallis: Oregon Estuarine Research Council.
- Morgan, J., and Holton, R. 1977. A Bibliography of Estuarine Research in Oregon. Corvallis: Oregon Estuarine Research Council.

. 1977. A Compilation of Current Research and Management Programs Concerning Oregon's Estuaries. Corvallis: Oregon Estuarine Research Council.

Oregon Division of State Lands. 1973. Oregon Estuaries.

1984. Estuarine Mitigation: The Oregon Process.

- Oregon Department of Fish and Wildlife. 1979. Estuary Inventory Report, Volume 1: Habitat Classification and Inventory Methods for the Management of Oregon Estuaries; and Volume 2:
 - No. 1. Natural Resources of Netarts Estuary.
 - No. 2. Natural Resources of Sand Lake Estuary.
 - No. 3. Natural Resources of Nestucca Estuary.
 - No. 4. Natural Resources of Siletz Estuary.
 - No. 5. Natural Resources of Umpgua Estuary
 - No. 6. Natural Resources of Coos Bay Estuary.
 - No. 7. Natural Resources of Coguille Estuary.
 - No. 8. Natural Resources of Rogue Estuary.
 - No. 9. Natural Resources of Chetco Estuary.
- Oregon Coastal Conservation and Development Commission. 1973. Coastal Wetlands of Oregon.

1974. Estuarine Resources of the Oregon Coast.

- Oregon Land Conservation and Development Commission, 1985. Statewide Planning Goals and Guidelines.
- Oregon State University Extension Service. 1982. Obtaining Permits for Waterway Development. SG 72. Corvallis: Oregon State University.
- Percy, K. L., D. A. Bella, C. Sutterlin, and P. C. Klingeman. 1974. Oregon's Estuaries. Corvallis: Oregon State University.
- Seliskar, D. M., and Gallagher, J. L. 1983. The Ecology of Tidal Marshes of the Pacific Northwest Coast: A Community Profile. FWS/OBS-82/32. Washington, D. C.: U. S. Government Printing Office.
- Simenstad, C. A. 1983 The Ecology of Estuarine Channels of the Pacific Northwest Coast: A Community Profile. FWS/OBS-83/05. Washington, D. C.: U. S. Government Printing Office.
- Thomas, D. W. 1983. Changes in Columbia River Estuary Habitat Types Over the Past Century. Astoria: Columbia River Estuary Study Taskforce (CREST).
- United States Department of the Interior, Fish and Wildlife Service. 1970. National Estuary Study. Seven Volumes. Washington, D. C.: U. S. Government Printing Office.

GLOSSARY¹⁰

- AMPHIPODS. A large group of small crustaceans with a laterally compressed body (as the sand flea).
- BASAL. Relating to, situated at, or forming the base.
- BENTHIC. Relating to the bottom of a body of water; includes the substrate and the water within one meter of the substrate.
- BENTHIC. Living on or within the bottom sediments in water bodies.
- BIOMASS. The total mass of all living matter within a specified area or volume.
- BRACKISH. Fresh water mixed with a small amount of salt water.
- BRIDGE CROSSINGS. The portion of a bridge spanning a waterway not including supporting structures or fill located in the waterway or adjacent wetlands.

BRIDGE CROSSING SUPPORT STRUCTURES. Piers, piling, and similar structures necessary to support a bridge span, but not including fill for causeways or approaches.

- COASTAL ZONE. The area lying between the Washington border on the north to the California border on the south, bounded on the west by the extent of the state's jurisdiction, and in the east by the crest of the coastal mountain range, with the exception of: (a)The Umpgua River basin, where the coastal zone shall extend to Scottsburg; (b)The Rogue River basin, where the coastal zone shall extend to Agness; (c)The Columbia River basin, where the coastal zone shall extend to the downstream end of Puget Island.
- CONSERVE. To manage in a manner which avoids wasteful or destructive uses and provides for future availability.
- DETRITUS. Material in various stages of microbial decomposition which represents a potential energy source to consumer organisms.
- **DEVELOP.** To bring about growth or availability; to construct or alter a structure, to conduct a mining operation, to make a physical change in the use or appearance of land, to divide land into parcels, or to create or terminate rights to access.

DEVELOPMENT. The act, process or result of developing.

- EPIPHYTE. A plant that relies on another plant for mechanical support but not nutrients.
- ESTUARY. A body of water that is semi-enclosed by land, connected with the open ocean, and within which salt water is usually diluted by freshwater derived from the land. The estuary includes: (a) estuarine water; (b) tidelands; (c) tidal marshes; and (d) submerged lands. Estuaries extend upstream to the head of the tidewater, except for the Columbia River Estuary, which by definition is considered to extend to the western edge of Puget Island.
- ESTUARINE ENHANCEMENT. An action which results in a long-term improvement of existing estuarine functional characteristics and processes that is not the result of a creation or restoration action.

10 Adapted from the Statewide Planning Goals, USFWS 1980, and Webster's New Collegiate Dictionary.

FILL. The placement by man of sand, sediment, or other material, usually in submerged lands or wetlands, to create new uplands or raise the elevation of land.

face.

INTERTIDAL. ODFW and DSL define intertidal lands as submersible lands extending from extreme low water (ELW), which is approximately 3 feet less than mean lower low water (MLLW), to mean higher high water (MHHW) or the line of nonaguatic vegetation, whichever is higher. The maps in the Estuary Plan Book use this definition. Goal 16 defines intertidal as between the levels of mean lower low tide (MLLT) and mean higher high tide (MHHT).

MANAGEMENT UNIT. A discrete geographic area, defined by biophysical characteristics and features, within which particular uses and activities are promoted, encouraged, protected, or enhanced, and others are discouraged, restricted, or prohibited.

MINOR NAVIGATIONAL IMPROVEMENTS. Alterations necessary to provide water access to existing or permitted uses in conservation management units, including dredging for access channels and for maintaining existing navigation, but excluding fill and in-water navigational structures other than floating breakwaters or similar permeable wave barriers.

OCCDC. Oregon Coastal Conservation and Development Commission, created by ORS 191; existed from 1971 to 1975. Its work is continued by LCDC.

PHYTOPLANKTON. Suspended aquatic organisms which do not require a solid substrate or attachment and which are able to photosynthesize.

POLYCHAETE. A class (Polychaeta) of chiefly marine worms usually with paired segmental appendages.

PRESERVE. To save from change or loss and reserve for a special purpose.

PROTECT. Save or shield from loss, destruction, or injury or for future intended use.

tion.

HYDROPHYTE. A perennial vascular aquatic plant that has its overwintering buds under water; a plant growing in water or in soil too waterlogged for most plants to survive.

HOLDFAST. A part by which an organism attaches itself to a flat sur-

MITIGATION. The creation, restoration, or enhancement of an estuarine area to maintain the functional characteristics and processes of the estuary, such as its natural biological productivity, habitats, species diversity, unique features and water guality (ORS 541.626).

OCEAN FLOODING. The flooding of lowland areas by salt water owing to tidal action, storm surge or tsunamis (seismic sea waves). Landforms subject to ocean flooding include beaches, marshes, coastal lowlands, and low lying interdune areas. Areas of ocean flooding are mapped by the Federal Emergency Management Agency (FEMA). Ocean flooding includes areas of velocity flooding and associated shallow marine flooding.

RECREATION. Any experience voluntarily engaged in largely during leisure (discretionary time) from which the individual derives satisfac-

APPENDIX

- Coastal Recreation occurs in offshore ocean waters, estuaries, and streams, along beaches and bluffs and in adjacent shorelands. It includes a variety of activities, from swimming, scuba diving, boating, fishing, hunting, and use of dune buggies, shell collecting, painting, wildlife observation, and sight-seeing to coastal resorts and water-oriented restaurants.
- Low-Intensity Recreation does not require developed facilities and can be accommodated without change to the area or resource. For example, boating, hunting, hiking, wildlife photography and beach or shore activities can be low-intensity recreation.
- High-Intensity Recreation uses specially built facilities, or occurs in such density or form that it requires or results in a modification of the area or resource. Campgrounds, golf courses, public beaches and marinas are examples of high-intensity recreation.
- **RESTORE.** Revitalizing, returning, or replacing original attributes and amenities, such as natural biological productivity, aesthetic, and cultural resources, which have been diminished or lost by past alternations, activities, or catastrophic events. For the purposes of Goal 16, estuarine restoration means to revitalize or reestablish functional characteristics and processes of the estuary diminished or lost by past alterations, activities, or catastrophic events. A restored area must be a shallow subtidal or an intertidal or tidal marsh area after alteration work is performed, and may not have been a functioning part of the estuarine system when alteration work began.
 - Active Restoration involves the use of specific positive remedial actions, such as removing fills, installing water treatment facilities, or rebuilding deteriorated urban waterfront areas.
 - Passive Restoration is the use of natural processes, sequences, and timing, which occurs after the removal or reduction of adverse stresses, without other specific positive remedial action.
- RIPARIAN. Of, pertaining to, or situated on the edge of a body of water.
- RIPRAP. A layer, facing, or protective mound of stones randomly placed to prevent erosion, scour or sloughing of a structure or embankment; also, the stone so used. In local usage, the similar use of other hard material, such as concrete rubble, is also frequently included as riprap.
- RURAL LAND. Rural lands are those which are outside the urban growth boundary and are: (a) Non-urban agricultural, forest or open space lands; or (b) Other lands suitable for sparse settlement, small farms or acreage homesites with no or hardly any public services and which are not suitable, necessary or intended for urban use.
- SESSILE. Attached directly by the base, not raised upon a stalk or peduncle. Also, permanently attached or established.
- SHORELINE. The boundary line between a body of water and the land, measured on tidal waters at mean higher high water and on non-tidal waterways at the ordinary high-water mark.
- SIGNIFICANT HABITAT AREAS. A land or water area where sustaining the natural resource characteristics is important or essential to the production and maintenance of aquatic life or wildlife populations.
- SUBSTRATE. The medium upon which an organism lives and grows; the surface of the land or the bottom of a body of water.

SUBTIDAL. Below the level of mean lower low tide (MLLT).

- TEMPORARY ALTERATION. Dredging, filling, or another estuarine alteration occurring over a specified short period of time which is needed to facilitate a use allowed by an acknowledged plan. Temporary alterations may not be for more than three years and the affected area must be restored to its previous condition. Temporary alterations include: (a) Alterations necessary for federally authorized navigation projects (e.g., access to dredged material disposal sites by barge or pipeline and staging areas or dredging for jetty maintenance); (b) Alterations to establish mitigation sites, alterations for bridge construction or repair, and for drilling or other exploratory operations; and (c) Minor structures (such as blinds) necessary for research and educational observation.
- TIDAL MARSH. Wetlands from lower high water (LHW) inland to the line of nonaquatic vegetation.
- URBAN LAND. Urban areas are those places which must have an incorporated city. Such areas may include lands adjacent to and outside the incorporated city and may also: (a) Have concentrations of persons who generally reside and work in the area; or (b) Have supporting public facilities and services.
- URBANIZABLE LAND. Urbanizable lands are those lands within the urban growth boundary and which are identified and (a) Determined to be necessary and suitable for future urban uses; (b) Can be served by urban services and facilities; and (c) Are needed for the expansion of an urban area.
- WATER-DEPENDENT. A use or activity which can be carried out only on, in, or adjacent to water areas because the use requires access to the water body for water-borne transportation, recreation, energy production, or source of water.
- WATER-ORIENTED. A use whose attraction to the public is enhanced by a view of, or access to, coastal waters.
- WATER-RELATED. Uses which are not directly dependent upon access to a water body, but which provide goods or services that are directly associated with water-dependent land or waterway use, and which, if not located adjacent to water, would result in a public loss of quality in the goods or services offered. Except as necessary for water-related uses or facilities, residences, parking lots, spoil and dump sites, roads and highways, restaurants, businesses, factories and trailer parks are not generally considered dependent on or related to water location needs.
- WETLANDS. Land areas where excess water is the dominant factor determining the nature of soil development and the types of plant and animal communities living at the soil surface. Wetland soils retain sufficient moisture to support aquatic or semi-aquatic plant life. In marine and estuarine areas, wetlands are bounded at the lower extreme by extreme low water; in freshwater areas by a depth of six feet. The areas below wetlands are submerged lands.

ZONATION. Distribution of kinds of organisms in biogeographic zones.

GENERIC ZONING MATRIX

n order to compile coastwide information on estuary and shoreland zoning, it has been necessary to develop a set of generic categories to classify all of the different local zoning districts. The matrix provided below is a series of general classifications which have been used for this purpose. The charts in Chapter Four are based on this matrix.

The zones of each city or county with management responsibility for either estuary or shorelands have been listed according to general type of zone. The lists reflect those zones existing at the time of publication, some of which did not exist at the time the plan was acknowledged. Not all of the listed zones are shown on the areas mapped in this publication.

There are three generic estuary management units corresponding to Goal 16 requirements for management units. The eleven generic shoreland zones reflect the different types of land use designations typically used in shorelands or required by the Statewide Planning Goals. The names and the labels used on the tables below and in Chapter Four are as follows:

Estuary Management Unit Types:

- EN
- EC
- ED

Shoreland Zone Types:

F	- Forest
FU	- Exclusiv
FF	- Farm/F
REC	- Recreat
RR	- Rural R
UR	- Urban F
С	- Comme
1	- Industri
WDR	- Water [
DUD	Dulalial

CON

 Estuary Natural - Estuary Conservation Estuary Development

ive Farm Use Forest ation Residential Residential ercial rial Dependent Development PUB - Public Lands Conservation

CLATSOP COUNTY ESTUARIES

COLUMBIA RIVER ESTUARY

		Estu	ary				<u></u>	S	hore	and	i		1	
Zone Types	EN	EC	ED	F	FU	FF	REC	RR	UR	с	1	WDR	PUB	CON
City of Warrenton	A3	A2	A1	_	_	_ "	-	R40 RD	RM R10 R20	C1 C2 C4	1 2 4	EB I3 C3 IM	-	7
Town of Hammond	—	AC	AD	-		-	RO	-	R10 R6 R5 RH	C1 C2	l1 l2	-	-	SC
City of Astoria	A4	A3	A1 A2	_	-	-	-	-	R1 R2 R3	C1 C2 C3 C4	S2 S3	S1 TPM	-	S4 S5
Clatsop County	AN	AC1 AC2	AD	F80 F38		AF20	OPR RM	RA1 RA2 RA5 SFR1 RSA/ RSA/	SFR	GC NC TC	LI HI MR	M1		CS NS NU

NECAN	ICUM	RIVE	ER

		Estu	ary					S	hore	land				
Zone Types	EN	EC	ED	F	FU	FF	REC	RR	UR	с	I	WDR	PUB	CON
City of Seaside	A1	A2	-	-	EFU	-	OPR	-	R1 R2 R3 SR	RM C1 C2 C3 C4	M1 AD	_	-	A3 ADI
City of Gearhart	A1	A2	_	_	-	-	Ρ	RA	R1 R2 R3 RCP	C1 C2 C3	-	_	P/SP	BAD
Clatsop County	_	NAC	2 —	<u></u>	_	_	-	_	_	_	_	_	_	_

TILLAMOOK COUNTY ESTUARIES

- N	IEH	AL	EM	BA	Y	
-						

		Estua	ary	1					s	horel	and				
Zone Types	EN	EC	ED	1 de	F	FU	FF	REC	RR	UR	с	1	WDR	PUB	CON
Tillamook County	EN	EC1 EC2 ECA	ED		F	F1	SFW10 SFW20		RR	R1 R2 R3 RMH	C1 C2	LM M1 ·	WDD	-	-
City of Wheeler	-	*	-		-	1	-	-	-	R1 R2	GC	-	IND WRC	Ρ	-
City of Nehalem	_	*	-		-	-	-	-	-	RM RL MR RT	С	_	-	Ρ	±

TILLAMOOK BAY

Tillamook County	EN	EC1 EC2 ECA	ED	F	F1	SFW10 SFW20		RR	R1 R2 R3 RMH	C1 C2	LM M1	WDD	-	Ξ,
City of Tillamook	-	*	_	_	-	_	0	_	RO R5 R7.5	CH CC	IL IG	-	-	0
City of Bay City	-	*	-	-	-	-	-	-	H1 M1 L1	_	S2	_	S1	-
City of Garibaldi	-	*	_	-	-	-	-	_	R1	С	11	WD1 WD2	-	_

NETARTS BAY, SAND LAKE, AND NESTUCCA BAY

Tillamook County	EN	EC1 EC2 ECA	ED	F	F1	SFW10 RM SFW20	RR	R1 R2 R3	C1 C2	LM M1	WDD	-
								RMH				

Cities in Tillamook County use Tillamook County management unit designations.

	1	Estua	ary						S	horel	and		_		
Zone Types	EN	EC	ED	100	F	FU	FF	REC	RR	UR	С	I.	WDR	PUB	CON
SALMON RIVER															
Lincoln County	MW #	MW #	MW #		TC	AC	-	PF	RR5	R1	C1 CT	IP	MP	PF	-
SILETZ BAY															
Lincoln County	MW #	MW #	MW #		TC	AC	-	PF	RR1 RR2	R1	C1	IP	MP	PF	-
Lincoln City	_	-			-	-	-	-	-	R10 R7.5 R5	PC GC RC	PI	-	-	EQ
YAQUINA BAY															
Lincoln County	MW #	MW #	MW #		TC	AC	-	PF	RR1 RR2 RR5	R4 R3 R2 R1A R1	C1 C2 CT	IP	MP	PF	_
Toledo	-	-	_		-	-	-	_	-	RS RG	С	l Ll	WD	PL	NR
Newport	-	-	-			_		P2	-	R1 R2 R3 R4 MH	C1 C2 C3	1 2 3	W1 W2	P1	P3
ALSEA BAY															
Lincoln County	MW #	MW #	MW #		TC	AC	_	PF	RR1 RR2 RR5	R4 R3 R2 R1A R1	C1 C2 CT	IP	MP	PF	
Waldport	-	-	-		-	-	_	-	-	R1 R2 R3 R4	C1 C2	IP I1	MP	-	PF

All Lincoln County estuary management units are designated "Marine Waterway" (MW) with a dis-tinguishing number. The maps in this book show use the generic classifications to allow distinction between types of management units on the map.

LINCOLN COUNTY ESTUARIES

APPENDIX

125

SIUSLAW RIVER ESTUARY

		Estu	ary					S	horel	and				
Zone types	EN	EC	ED	F	FU	FF	REC	RR	UR	с	I	WDR	PUB	CON
Lane County	NE	CE	DE	F1 F2	E	ML	PR	RR	RA RG	C1 C2 C3 CR	M1 M2 M3	-	PF	NR
(Estuary manager	ment unit	ts are	given l	etter lab	els, a	nd sh	orelar	nd ur	nits nu	mbe	rs.)			
City of Florence	NE	CE	DE	-	_	-	-	-	RR RS RMH RM	C H NC	LI AD	M WF	-	OS

UMPQUA RIVER ESTUARY

	Estuary								Shoreland										
Zone Types	EN	EC	ED	F	FU	FF	REC	RR	UR	с	I.	WDR	PUB	CON					
Douglas County	EN	EC	ED	TR	FG FC	FF AW	-	5R RR 1R	RS R1 R2 R3	C1 C2 C3 CT	M1 M2 M3	MC MRI MR	WI	CS					
(Douglas County a	ulso emp	loys	twenty of	different	over	lay zo	nes th	nat a	re no	t liste	d her	e.)							
City of Reedsport	EN	EC	ED	-	-	AR	-	-	RA R1 R2	C1 C2	M1 M2	M3 C3	PL	CS					

		Estu	ary					S	horel	and					
Zone Types	EN	EC	ED	F	FU	FF	REC	RR	US	с	I	WDR	PUB	CON	Zone Typ
Coos County	NA	CA	DA	F	EFU EFU10	-	REC	RR2 RR5 RC	UR1 UR2 URM	CD5 CD10 C1	IND	-	-	NR SS MES	Curry Count
(Coos County utiliz this book show es	tuary man	nager anage	nent un ement u	its for be	oth est bers b	uarie ut no	s and ot sho	shor	eland d mar	s. The	e ma nent	ps of unit n	Coos	Bay in ers.)	City of Gold
City of Coos Bay	_	_	-	-	-	_	_	_	R1 R2 R3 R4P R5 RW	C1 C2 MP	IC	WI I1	QP1 QP3	QP2	СНЕТСО
City of Eastside	_	-	_	-	_	_	-	-	R7.5 RM5	C R/C	PI PI/ SD	_	PF	В	Zone Types
(Eastside is now a	part of	the C	City of C	oos Bay	, but c	origin	al Eas	stside	zone	es still	app	ly.)			
City of North Bend	-	_		-	_		-	_	R5 R6 R7 R10 RM RT	CC CL CG	ML MH AZ	_	_	_	City of Broo

COOS COUNTY ESTUARIES

COQUILLE RIVER ESTUARY

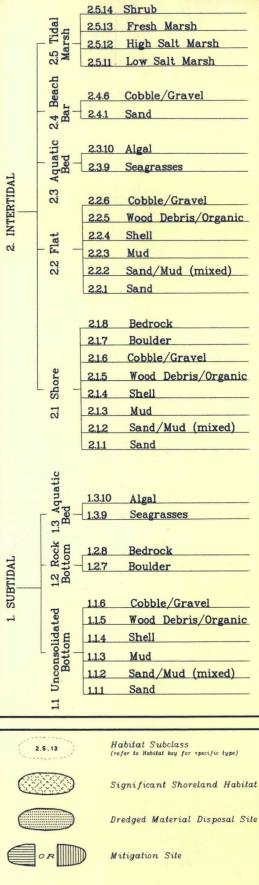
COOS BAY

		Shoreland												
Zone Types	EN	EC	ED	F	FU	FF	REC	RR	US	С	I	WDR	PUB	CON
City of Bandon	W	W	W	-	-		_	_	R MHR CD1 CD2	C1 C2 GC	LI HI	C3	PF	NR
Coos County	NA	CA	DA	F	EFU EFU10	_	REC	RR2 RR5 RC	UR1 UR2 URM	CD5 CD10 C1	IND	_	_	NR SS MES

ROGUE RIVER

Estua -EN EC pes

ER1 ER2 inty old Beach 9ER1 9ER2


O RIVER

	ļ	Estua	ary					SI	horela	and				
Zone Types	EN	EC	ED	F	FU	FF	REC	RR	UR	с	I.	WDR	PUB	CON
Curry County	ER1	ER2	ER3	Т	EFU	FG AFD	RCR	RR	R1 R2 R3	RC C1 C2	М	MA	PF	CN
City of Brookings	_	_	-	_	-	_	-		RLD RMD R-MH	CT CG	ML MG	-	P/OS	-

CURRY COUNTY ESTUARIES

a	ry					S	hore	land			_	
	ED	F	FU	FF	REC	RR	UR	с	I	WDR	PUB	CON
	ER3	Т	EFU	FG AFD	RCR	RR	R1 R2 R3	RC C1 C2	М	MA	PF	CN
2	9ER3	-	-	-	-	-	1R 2R 3R	4C	51	6MA	7PF	8CN 10SO

U.S. Highway 101

State Highways

OR

+ \wedge Improved Roads (includes city streets & county roads)

Public Land Survey (lounship corner marks)

Monument Site